DOI QR코드

DOI QR Code

호박과실파리 발생생태 및 계절초기 성충우화시기 예찰 모형

Population Phenology and an Early Season Adult Emergence model of Pumpkin Fruit Fly, Bactrocera depressa (Diptera: Tephritidae)

  • 발행 : 2008.12.30

초록

호박과실파리(Bactrocera depressus)는 파리목 과실 파리과에 속한 곤충으로 박과류 작물의 중요한 해충이다. 이 연구는 호박과실파리의 호박 피해관련 기초생태를 구명하고 성충우화시기 예찰모형을 개발하고자 수행하였다. 애호박 생산농가에서 호박과실파리 산란 흔적은 7월 중하순부터 발생되기 시작하여 8월 하순 최성기를 보였으며 9월 하순부터는 발견되지 않았으며, 이 기간이 호박과실파리 산란활동 시기로 판단되었다. 숙과호박 농가에서는 7월 하순 어린 과실에 산란 흔적이 발견되었고 8월 이후 유충에 의한 호박의 부패가 시작, 10월까지 피해과가 급격히 증가하였다. 호박과실파리 산란흔적은 호박 과실 당 평균 2.2개가 발견되었으며, 과실 당 $28.8{\sim}29.8$개의 산란수를 보였다. 우화트랩으로 조사한 호박과실파리 월동번데기의 우화시기는 초발일이 5월 중순에서 하순 사이로 나타났고, 최성기는 5월 하순 내지 6월 상순이었다. 호박과실파리 월동번데기의 우화까지 발육기간은 $15^{\circ}C$에서 59.0일, $20^{\circ}C$ 39.3일, $25^{\circ}C$ 25.8일, $30^{\circ}C$ 21.4일이었고 $35^{\circ}C$에서는 발육하지 못하였다. 온도와 월동번데기 발육기간 관계에 대한 선형모형 추정결과는 발육영점온도는 $6.8^{\circ}C$로 추정되었고 발육완료에 필요한 적산온도는 482.3 DD 이었다. 또한 월동번데기 발육률과 온도와 비선형적 관계는 Gaussian 모형으로 잘 설명되었다. 적산온도 모형으로 50% 성충우화일을 예측한 결과 실측치와 편차가 1일로 적중률이 높았다. 또한 발육모형과 발육완료시기 분포모형(Weibull 함수)을 이용한 발율률 적산모형의 예측치는 실측치의 우화양상과 유사하였다. 본 연구결과는 향후 호박과실파리의 관리전략 수립에 유용하게 이용될 수 있을 것으로 기대된다.

The pumpkin fruit fly, Bactrocera depressa (Tephritidae: Diptera), is one of the most important pests in Cucurbitaceae plants. This study was conducted to investigate the basic ecology of B. depressa, and to develop a forecasting model for predicting the time of adult emergence in early season. In green pumpkin producing farms, the oviposition punctures caused by the oviposition of B. depressa occurred first between mid- and late July, peaked in late August, and then decreased in mid-September followed by disappearance of the symptoms in late September, during which oviposition activity of B. depressa is considered active. In full-ripened pumpkin producing farms, damaged fruits abruptly increased from early Auguest, because the decay of pumpkins caused by larval development began from that time. B. depressa produced a mean oviposition puncture of 2.2 per fruit and total 28.8-29.8 eggs per fruit. Adult emergence from overwintering pupae, which was monitored using a ground emergence trap, was first observed between mid- and late May, and peaked during late May to early June. The development times from overwintering pupae to adult emergence decreased with increasing temperature: 59.0 days at $15^{\circ}C$, 39.3 days at $20^{\circ}C$, 25.8 days at$25^{\circ}C$ and 21.4 days at $30^{\circ}C$. The pupae did not develop to adult at $35^{\circ}C$. The lower developmental threshold temperature was calculated as $6.8^{\circ}C$ by linear regression. The thermal constant was 482.3 degree-days. The non-linear model of Gaussian equation well explained the relationship between the development rate and temperature. The Weibull function provided a good fit for the distribution of development times of overwintering pupae. The predicted date of 50% adult emergence by a degree-day model showed one day deviation from the observed actual date. Also, the output estimated by rate summation model, which was consisted of the developmental model and the Weibull function, well pursued the actual pattern of cumulative frequency curve of B. depressa adult emergence. Consequently, it is expected that the present results could be used to establish the management strategy of B. depressa.

키워드

참고문헌

  1. Allen, J. C., 1976: A modified sine wave method for calculating degree days. Environmental Entomology 5, 388-396 https://doi.org/10.1093/ee/5.3.388
  2. Fisher, S. R., W. P. Kemp, and F. B. Pierson. 1996: Aulocara elliolti (Othoptera: Acarididae): diapause termination, postdiapause development, prediction of hatch. Environmental Entomology 25, 1118-1166
  3. Foote, R. H., F. L. Blanc, and A. L. Norrbom, 1993: Handbook of the Fruit Flies (Diptera: Tephritidae) of America and North of Mexico. Ithaca, NY/London: Comstock. 571pp.
  4. Han, H. Y., and Y. J. Kwon, 2000: Economics insects of Korea 3 (Diptera: Tephritidae). Insecta Koreana Supplement 10, 113. (in Korean with English abstract)
  5. Han, M. J., S. H. Lee, S. B. Ahn, J. Y. Choi, and K. M. Choi, 1994: Distribution, damage and host plants of pumpkin fruit fly, Paradacus depressa (Shiraki). RDA Journal of Agricultural Science, 346-350. (in Korean with English abstract)
  6. Huang T. C., Edward Y. C., C. H. Kao, Y. B. Hwang, and M. Y. Chiang, 2006: Area-wide control of the Oriental fruit fly and Melon fly in Taiwan. Proceeding of the International Symposium on Area-Wide Management of Insect Pests, 137-146
  7. Jandel Scientific, 1996: Table Curve 2D Software. San Rafael, CA
  8. Jeon, S. W., 2008: Biological characteristics of Bactrocera (Paradacus) depressa (Shiraki) 39pp. M. S. Thesis, Chonbuk National University. (in Korean with English abstract)
  9. Kim, T. H., J. S. Kim, and J. H. Mun, 1999: Distribution and bionomics of Bactrocera (Paradacus) depressa (Shiraki) in Chonbuk province. Korean Journal of Soil Zoology 4, 26-32. (in Korean with English abstract)
  10. Kim, J. S., 1999: Distribution and life cycle of Bactrocera (Paradacus) depressa (Shiraki) in Chonbuk Province. 28pp. M. S. Thesis, Chonbuk National University. (in Korean with English abstract)
  11. Kim, T. H., and J. S. Kim, 2002: Annual occurrence and bionomics of the pumpkin fruit fly [Bactrocera (Paradacus) depressa Shiraki]. Korean Journal of Soil Zoology 7, 1- 5. (in Korean with English abstract)
  12. Ministry for Food, Agriculture, Forestry and Fisheries, 2006: Agricultural statistics (http://www.maf.go.kr/index.jsp)
  13. National Plant Quarantine Service, 2004: (http://www.npqs.go.kr)
  14. Prokopy, R. J., and J. J. Duan, 1998: Socially facilitated egg laying behavior in Mediterranean fruit flies. Behavioral Ecology and Sociobiology 42, 117-122 https://doi.org/10.1007/s002650050419
  15. Reuven, D., J. P. Ronald, R. P. Dan, and J. D. Jian, 2001: Egg Laying Behavior of Mediterranean Fruit Flies (Diptera: Tephritidae): Is Social Facilitation Important? The Florida Entomologist 84, 665-671 https://doi.org/10.2307/3496399
  16. Roger, I. V., F. L. M. Ronald, W. Lyle, and B. J. Eric, 2006: Successful utilization of the Area-wide approach for the management of fruit flies in Hawaii. Proceeding of the International Symposium on Area-Wide Management of Insect Pests, 31-40
  17. SAS Institute, 1999: SAS/STAT User's Guide (Release 6.11 Ed.) SAS Institute, Cary, NC
  18. Seo, Y. D., S. Park, E. J. Ban, J. Y. Yang, T. J. Kang, H.-Y. Jeon, and D. S. Kim, 2008: Oviposition behavior of pumpkin fruit fly, Bactrocera depressa (Tephritidae: Diptera) in a cage environment. Journal of Subtropical Agriculture and Biotechnology 24, 43-47
  19. Smith, A. U., 1992: Modeling the development and survival of eggs of pea weevil (Coleoptera: Bruchidae). Environmental Entomology 21, 314-321 https://doi.org/10.1093/ee/21.2.314
  20. Sunday E., W. N. Peterson, and L. C. Chiou, 2007: Adaptation to and small-scale rearing of invasive fruit fly Bactrocera invadens (Diptera: Tephritidae) on artificial diet. Annals of the Entomological Society of America 100, 562-567 https://doi.org/10.1603/0013-8746(2007)100[562:ATASRO]2.0.CO;2
  21. Taylor, R. A. J., 1981: The behavioural basis of redistribution. II. Simulations of the delta-model. The Journal of Animal Ecology 50, 587-604 https://doi.org/10.2307/4076
  22. Vargas R. I., and S. Mitchell, 1987: Two artificial larval diets for rearing Dacus latifrons (Diptera: Tephritidae). Journal of Economic Entomology 80, 1337-1339 https://doi.org/10.1093/jee/80.6.1337
  23. Yoshifumi, T., 1952: On ecology of pumpkin fruit fly. Applied Insect 8, 14-18

피인용 문헌

  1. Determination of acetamiprid residues in zucchini grown under greenhouse conditions: application to behavioral dynamics vol.25, pp.1-2, 2011, https://doi.org/10.1002/bmc.1529
  2. Taxonomy of Korean Bactrocera (Diptera: Tephritidae: Dacinae) with review of their biology vol.20, pp.4, 2017, https://doi.org/10.1016/j.aspen.2017.09.011