Changes of Antioxidative Enzymes and Alcohol Dehydrogenase in Young Rice Seedlings Submerged in Water

담수조건하 벼 발아 및 입모단계시 항산화효소 및 Alcohol dehyrogenase활성 변화

  • Published : 2008.12.31

Abstract

Successful germination and establishment of seedlings in flooded paddy are critical in direct seeding cultivation of rice. In this study, we examined the relationship between antioxidant enzymes and alcohol dehydrogenase (ADH) activities and coleoptile elongation under submergence of deep water with two rice cultivars, Iksan429 and Woodrose, which show characteristic coleoptile elongation under hypoxic condition. The growth of shoot under submerged in water was faster than the root. The survival duration was longer in Iksan429 than in Woodrose under submerged in water. The alcohol dehydrogenase (ADH) activities were significantly increased under hypoxia compared to in aerated condition. The ADH activity was increased in Iksan429 more than in Woodrose under hypoxia. The superoxide dismutase (SOD) activity in Iksan429 was gradually increased up to 5 days after treatment (DAT) then decreased slowly till 14 DAT under water, whereas in Woodrose it was dramatically decreased after 5 DAT. The peroxidase (POX) activity in Iksan429 was significantly increased until 7 DAT under hypoxia, whereas it was not significantly different in Woodrose during hypoxic treatment. However, in non-treated condition, POX activity in Woodrose was increased more than Iksan429. The changes of catalase (CAT) activities showed no differences in both cultivars. We suggest that the overexpression of ADH, SOD and POX activities is responsible for the hypoxic tolerance and plays an important role in the surviving of rice seedling.

상시담수 하에서 발아 및 안정적인 입모를 확보하는 것은 담수직파에서 매우 중요한 일이다. 일반적으로 담수 조건에 서는 유묘생장이 억제되지만, 담수 처리 시 초기생육이 우수한 익산429와 담수 처리 시 생육이 저조하며 생존율이 낮은 Woodrose 2품종에 대해 발아 및 초기생육기간 담수 처리하여 혐기대사와 관련된 ADH활성과 항산화효소들의 변화를 관찰하였다. 1. 담수 처리 시 벼는 유아만 신장하며 뿌리는 신장하지 못했고, 익산429가 Woodrose보다 담수상태에서 생존기간이 길었고 생장도 빨랐다. 그러나 무 처리에서는 Woodrose의 생육이 빨랐다. 2. ADH활성은 담수 처리 시 무 담수에 비해 급격히 증가하였고, 익산429가 Woodrose보다 활성이 오래 유지되었는데, 처리 7일째는 익산429가 무처리에 비해 약 7배, Woodrose는 약 2.5배 증가하였다. 4. SOD, POX, CAT 활성 모두 담수 처리에서 무 담수보다 낮았다. 그러나 SOD는 담수시 무 담수에 비해 크게 활성이 낮지는 않았으며 품종 간에는 익산429의 활성이 무 담수 및 담수 처리 모두 Woodrose보다 높았고 담수 시에도 익산429가 Woodrose보다 높게 유지되었다. POX 활성변화는 담수시 익산429가 지속적으로 증가한 반면 Woodrose는 큰 변화가 없었다. CAT활성은 담수 처리 초기부터 아주 낮은 활성을 보여 처리기간 동안 거의 증가하지 않았으나 무 담수시에는 3일까지 활성이 크게 증가하였다. 따라서 담수 처리 시 발아 및 초기생육기간 동안 담수내성이 약한 품종에서 SOD와 POX의 역할이 크고 ADH활성이 높게 유지되어 에너지를 공급할 수 있는 품종이 담수 시 초기생육에 유리할 것으로 사료된다.

Keywords

References

  1. Alpi, A. and Beever, H. 1983. Effects of $O^2$ concentration on rice seedling. Plant Physiol. 71 : 30-34 https://doi.org/10.1104/pp.71.1.30
  2. Amako, K., G. Chen, and K. Asada. 1994. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol. 35(3) : 497-504
  3. Beers, R., and I. Sizer. 1952. A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase. J. Biol. Chem.. 195 : 133
  4. Bergmeyer, H. U. 1974. Methods of enzymatic analysis 1, 2nd Ed.; Academic Press : New York. pp 495
  5. Blokhina, O. 2000. Anoxia and oxidative stress: Lipid peroxidation, antioxidant status and mitochondrial functions in plants. Academic dissertation : University of Helsinky
  6. Blokhina, O., T. V. Chirkova and K. V. Fagerstedt. 2001. Anoxic stress leads to hydrogen peroxide formation in plant cell. J. Exp. Botany 52(359) : 1179-1190 https://doi.org/10.1093/jexbot/52.359.1179
  7. Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany 91(2) : 179-194 https://doi.org/10.1093/aob/mcf118
  8. Bradford, M. M. 1976. A rapid and sensitive for the quatitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  9. Fukao, T., K. N. Xu, P. C. Ronald, and J. Bailey-Serres. 2006. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18 : 2021-2034 https://doi.org/10.1105/tpc.106.043000
  10. Gabriel, O. 1971. Analytical disc gel electrophoresis. In W.B. Jakoby (ed), Methods in Enzymology, vol. 22; Academic Press : New York. pp. 565-577
  11. Gibbs, J., S. Morrell, A. Valdez., T. L. Setter, and H. Greenway, 2000. Regulation of alcoholic fermentation in coleoptile of two rice cultivars differing in tolerance to anoxia. J. Exp. Botany. 51(345) : 785-796 https://doi.org/10.1093/jexbot/51.345.785
  12. Kato-Noguichi, H. and M. Morokuma. 2006. Ethanolic fermentation and anoxia tolerance in four rice cultivars. J. Plant Physiol. 164 : 168-173 https://doi.org/10.1016/j.jplph.2005.09.017
  13. Kennedy, R. A., M. E. Rumpho, and T. C. Fox. 1992. Anaerobic metabolism in plants. 100 : 1-6
  14. Kim, K. Y., B. K. Kim, M. S. Shin, J. I. Chung, J. K. Ko, J. K. Kim, J. H. Lim, and S. J. Yun. 2004. Activity and isozyme profile of antioxidative enzymes at booting stage of rice treated with cold water. Kor. J. Crop Sci. 49(4) : 89-294
  15. Kuk, Y. I. and J. S. Shin. 2007. Cross-tolerance and responses of antioxidative enzymes of rice to various environmental stress. Kor. J. Crop Sci. 52(3) : 264-273
  16. Lasanthi-Kudahettige, R., L. Magneshi, E. Loreti, S. Gonzali, and F. Licausi. 2007. Transcript profiling of the anoxic rice coleotile. Plant Physiol. 144 : 218-231 https://doi.org/10.1104/pp.106.093997
  17. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7(9) : 405-410 https://doi.org/10.1016/S1360-1385(02)02312-9
  18. Monk, L. S., K. V. Fagerstedt, and R. M. M. Crawford. 1987. Superoxide dismutase as an anaerobic polypeptide: A key factor in recovery form oxygen deprivation in Iris pseudacorus?. Plant Physiol. 85 : 1016-1020 https://doi.org/10.1104/pp.85.4.1016
  19. Noctor, G., A. C. M. Arisi, L. Jouania, K. J. Kunert, H. Rennenberg, and C. Foyer. 1998. Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 49 : 623-647 https://doi.org/10.1093/jexbot/49.321.623
  20. Ricard, B., I. Couee, P. Raymond, P. H. Saglio, V. Saint-Ges, and A. Pradet. 1994. Plant metabolism under hypoxia and anoxia. Plant Physiol. Biochem. 32 : 1-10
  21. Ricard, B., B. Mocquot, A. Fournier, M. Delseny, and A. Pradet. 1986. Expression of alcohol dehydrogenase in rice embryo under anoxia. Plant Mol. Bio. 7 : 321-329 https://doi.org/10.1007/BF00032562
  22. Settler, T. L., M. Ellis, E. V. Laureles, E. S. Ella, D. Senadhira, S. B. Mishra, S. Sarkarung, and S. Datta. 1997. Physiology and genetics of submergence tolerance in rice. Annals of Botany 79(supplement A): 67-77 https://doi.org/10.1006/anbo.1996.0304
  23. Sharma, P. and R. S. Dubey. 2004. Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Science 167 : 541-550 https://doi.org/10.1016/j.plantsci.2004.04.028
  24. Shewfelt, R. L. and A. C. Purvis. 1995. Toward a comprehensive model for lipid peroxidation in plant tissue disorders. Hortic. Sci. 30 : 213-218
  25. Siangliw, M., T. Toojinda, S. Tragoonrung, and A. Vanavichit. 2003. Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann. Bot. (Lond) 91 : 255-261 https://doi.org/10.1093/aob/mcf123
  26. Toojinda, T., M. Siagliw, S. Tragoonrung, and A. Vanavicht. 2003. Molecular genetics of submergence tolerance in rice : QTL analysis of key traits. Ann. Bot. (Lond) 91 : 243-253 https://doi.org/10.1093/aob/mcf072
  27. Tadege, M., I. Dupuis, and C. Kuhlemeier. 1999. Ethanolic fermentation, new functions for an old pathway. Trends plant. Sci. 4 : 320-325 https://doi.org/10.1016/S1360-1385(99)01450-8
  28. Ushimaru, T., M. Shibasaka, and H. Tsuji. 1992. Changes in levels of heme a, protoheme and protochlorophyll (ide) in submerged rice seedlings after exposure to air. Plant Cell Physiol. 33 : 771-778
  29. Ushimaru, T., S. Kanematsu, M. Shibasaka, and H. Tsuji. 1999. Effect of hypoxia on the antioxidative enzymes in aerobically grown rice (Oryza sativa) seedlings. Physiol. Plant 107 : 181-187 https://doi.org/10.1034/j.1399-3054.1999.100205.x
  30. Vallee, B. and F. Hoch. 1955. Zinc, A Component of Yeast Alcohol Dehydrogenase , Proc. Natl. Acad. Sci. USA 41, 327-338
  31. Wayne, F., Jr. Beyer, and I. Fridovich. 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 161 : 559-566 https://doi.org/10.1016/0003-2697(87)90489-1
  32. Winterbourn, C. C., R. E. Hawkins, M. Brian, and R. W. Carrell. 1975. The Estimation of Red Cell Superoxide Dismutase Activity. J. Lab. Clin. Med. 85 : 337
  33. Xu, K., X. Xu, T. Fukao, and P. Canlas, R. Maghirang- Rodrigquez, S. Heuer, A. M. Ismail, J. Bailey-Serres, P. C. Ronald, and D. J. Mackill. 2006. Sub1A is an ethyleneresponse factor like gene that confers submergence tolerance to rice. Nature 442 : 705-708 https://doi.org/10.1038/nature04920
  34. 손지영, 백만기, 고종철, 김보경, 신서호, 정진일, 이재길, 김정곤. 2006. 초기생육 동안 벼 품종간 peroxidase와 catalase 활성 변화, 한국작물학회, 304