DOI QR코드

DOI QR Code

모기유충에 활성 있는 Bacillus thuringiensis subsp. tohokuensis CAB167 균주의 특성

Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 Isolate against Mosquito Larva

  • 길미라 (충남대학교 농업생명과학대학 응용생물과) ;
  • 김다아 (충남대학교 농업생명과학대학 응용생물과) ;
  • 백승경 (충남대학교 농업생명과학대학 응용생물과) ;
  • 김진수 (충남대학교 농업생명과학대학 응용생물과) ;
  • 최수연 (충남대학교 농업생명과학대학 응용생물과) ;
  • 김대용 (충남대학교 농업생명과학대학 응용생물과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물과) ;
  • 황인천 ((주) 경농 중앙연구소) ;
  • ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물과)
  • Kil, Mi-Ra (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, Da-A (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Paek, Seung-Kyoung (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, Jin-Su (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Choi, Su-Yeon (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Jin, Da-Yong (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Youn, Young-Nam (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University) ;
  • Hwang, In-Chon (Central Research Institute, Kyung Nong Co.) ;
  • Ohba, Michio (Bioresources and Management Laboratory, Graduate School of Agriculture, Kyushu University) ;
  • Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
  • 발행 : 2008.12.30

초록

본 연구는 모기에 활성을 나타내는 Bacillus thuringiensis subsp. tohokuensis CAB167균주에서 생산된 내독소결정단백질의 특성을 조사하였다. B. thuringiensis subsp. tohokuensis CAB167균주는 위상차 현미경과 주사전자현미경으로 관찰하여 일반적으로 모기에 활성을 나타내는 spherical type의 내독소결정 성단백질을 형성하는 것으로 나타났다. 국내에서 서식하는 지하집모기(Culex pipiens molestus), 빨간집모기(Culex pipiens pallens), 이집트숲모기(Aedes aegyti)에 대한 이 균주의 살충활성검정은 각각 173, 190, 580 ng/ml의 $LC_{50}$ 값으로 각각 활성을 보였다. B. thuringiensis subsp. tohokuensis CAB167균주에서 생산된 내독소결정성단백질의 SDS-PAGE를 통해 135, 80, 49와 28-kDa의 주요한 4개의 밴드를 나타냈다. 내독소결정성단백질의 소화에 영향을 미치는 곤충중장액과 유사한 trypsin효소를 처리하여 72와 63-kDa의 단백질이 새롭게 생성하였다. 파리목 위생해충인 모기에 활성을 나타내는 다른 7개의 B. thuringiensis 균주들의 내독소 결정성단백질과 혈청학적인 비교실험에서 독소단백질이 차이가 있는 것을 확인하였다.

Eight Bacillus thuringiensis strains activated against mosquito larva were compared their characterization. Spherical-shaped parasporal inclusion of B. thuringiensis subsp. tohokuensis CAB167 was observed by phase-contrast microscopy and scanning electron microscopy. $LC_{50}$ values of B. thuringiensis subsp. tohokuensis CAB167 against Culex pipiens molestus, Culex pipiens pallens, and Aedes aegyti were 173, 190 and 580 ng/ml, respectively. B. thuringiensis subsp. tohokuensis CAB167 had a parasporal inclusion containing 4 major protein components, for example, 135, 80, 49 and 28-kDa by SDS-PAGE. Otherwise, after trypsin digestion of parasporal inclusion, SDS-PAGE was showed new protease-resistant peptides at 72 and 63-kDa. Activated toxins of isolated CAB167 were different from other reference strains on a serological by immuno-diffusion test.

키워드

참고문헌

  1. Benintende, G.B., J.E. Lopez-Meza, J.G. Cozzi, C.F. Piccinetti, and J.E. Ibarra. 2000. Characterizaion of INTA 51-3, a new atypical strain of Bacillus thuringiensis from Argentina. Curr. Microbiol. 41: 396-401 https://doi.org/10.1007/s002840010157
  2. Cannon, R.J.C. 1996. Bacillus thuringiensis use in agriculture: A molecular perspective. Biol. Rev. Cambridge Phil. Soc. 71: 561-636 https://doi.org/10.1111/j.1469-185X.1996.tb01285.x
  3. Chilcott, C.N and P.J. Wigley. 1994. Opportunities for finding new Bacillus thuringiensis sratin collection. Appl. Eviron. Microbiolo. 64:4965-4972
  4. Choi S.Y., S.C. Oh, M.S. Cho, S.K. Paek, J.S. Kim, D.A. Kim, M.R. Gill, Y.N. Youn and Y.M. Yu. 2007. Bioassay of environment -friendly insecticides for management of mosquito, Culex pipiens molestus. Kor. J. Appl. Entomol. 46(2): 261-267 https://doi.org/10.5656/KSAE.2007.46.2.261
  5. Choi S.Y., M.S. Cho, T.H. Kim, J.S. Kim, S.K. Paek, D.A., Y.N. Youn, S.S. Hong and Y.M. Yu. 2008. Bioactive characterization of Bacillus thuringiensis subsp. kurstaki CAB133 isolated from domestic soil. Kor. J. Appl. Entomol. 47(2): 175-184 https://doi.org/10.5656/KSAE.2008.47.2.175
  6. Crickmore, N., Zeigler. D.R and J. Feitelson. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. & Mol. Biolo. Rev. 62: 807-813
  7. De Barros Moreira Beltrao, H and M.H. Silva-filha. 2007. Interaction of Bacillus thuringiensis svar. israelensis cry toxins with binding sites from Aedes aegyti (Diptera: Culicidae) larvae midgut. FEMS. Micro. Lett. 266(2): 163-169 https://doi.org/10.1111/j.1574-6968.2006.00527.x
  8. Dulmage, H.T. 1970. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J. Inverte. Pathol. 15: 232 -239 https://doi.org/10.1016/0022-2011(70)90240-5
  9. Federici, B.A. 1993. Insecticidal bacterial proteins identify the midgut epithelium as a source of novel target site for insect control. Arch. Insect. Biochem. Physiol. 22: 357-371
  10. Federici, B.A., Luhy. P and J.E. Ibrarra. 1990. The parasporal body of Bacillus thuringiensis subsp. israelensis: structure, protein composition and toxicity. In: de Barjae, H and Sutherland, S., (eds) Bacterial control of mosquitoes and blackflies: Biochemistry, genetics and applications of Bacillus thuringiensis and Bacillus sphaericus. New Brunsick, NJ: Rutgers University Press. 16-24
  11. Glare, T.R. and M. O'Callaghan. 2000. Bacillus thuringiensis: Biology, ecology and safety. Chichester: Wiley. 350.pp
  12. Hernstadt, C., G.G. Soares, E.R. Wilcox and D.L. Edwards. 1986. A new strain of Bacillus thuringiensis with activity against coleoptetan insects. Biotechnol. 4: 305-308 https://doi.org/10.1038/nbt0486-305
  13. Ishii. T and M. Ohba. 1994. The 23-kilodalton CytB protein is solely responsible for mosquito larvicidal activity of Bacillus thuringiensis serovar kyushuensis. Curr. Microbiol. 29: 91-94 https://doi.org/10.1007/BF01575754
  14. Khodyrev, V.P., G.V. Kalmykova, L.I. Burtseva and V.V. Glupov. 2006. Characterizaion of crystal-forming bacteria Bacillus thuringiensis subsp. tohokuensis toxic to mosquite larvae. Biolo. Bull. 33(5): 513-516 https://doi.org/10.1134/S1062359006050141
  15. Kim, H.S., H.W. Park, D.W. Lee, Y.M. Yu, J.I. Kim and S.K. Kang. 1995a. Distribution and characterization of Bacillus thuringiensis isolated from soils in Korea. Kor. J. Appl. Entomol. 34(4): 344-349
  16. Kim H.S., D.W. Lee, H.W. Park, Y.M. Yu, J.I. Kim and S.K. Kang. 1995b. Distribution and characterization of Bacillus thuringiensis isolated from soils of sericultural farms in Korea. Kor. J. Appl. Entomol. 37(1): 57-61
  17. Kim H.S., H.W. Park, D.W. Lee, Y.M. Yu and S.K. Kang. 1995c. Characterization of Bacillus thuringiensis isolated in Granary Dusts. Kor. J. Appl. Entomol. 34(3): 243-248
  18. Kim, D.A., J.S. Kim, M.R. Kil, Y.N. Youn, D.S. Park and Y.M. Yu. 2006. Isolation and activity of insect pathogenic Bacillus thuringiensis strain from soil. Kor. J. Appl. Entomol. 45(3): 357-362
  19. Klowden, M.J., G.A. Held and L.A.B. JR. 1983. Toxicity of Bacillus thuringiensis subsp. israelensis to adult Ades aegypti Mosquitoes. Appl. Environ. Microbiol. 312-315
  20. Koni, P.A and D.J .Ellar. 1993. Cloning and characterizaion of a novel Bacillus thuringiensis cytolytic delta-endotoxin. J. Mol. Biol. 229: 319-327 https://doi.org/10.1006/jmbi.1993.1037
  21. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680 -685 https://doi.org/10.1038/227680a0
  22. Mizuki, E., M. Ohba, T. Akao, S. Yamashita, H. Satio and Y.S. Park. 1999. Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cell. Appl. Microbiolo. 86: 477-486
  23. Nickerson, K.W. and L.A.Jr. Bulla. 1974. Physiology of sporeforming bacteria associated with insects minial nutritional requirement for growth sporulation and parasporal crystal formation in Bacillus thuringiensis. Appl. Environ. Microbiol. 28: 124-128
  24. Ohba, M and K. Aizawa. 1990. Occurrence of two pathotypes in Bacillus thuringiensis subsp. fukukaensis (Flagella Serotype 3a: 3d: 3e). J. Invertebr. Pathol. 59: 99-103 https://doi.org/10.1016/0022-2011(92)90118-N
  25. Ohba, M., H. Iwahana. and S. Asano. 1992. Unique isolate of Bacillus thuringiensis serovar japonensis with a high larvicidal activity specified for scarabaeid beetles. Lett. Appl. Microbiol. 14: 54-57 https://doi.org/10.1111/j.1472-765X.1992.tb00646.x
  26. Ohba, M., H. Saitoh, K. Miyamoto, K. Higuchi. 1995. Bacillus thuringiensis serovar higo (flagellar serotype 44), a new serogroup with a larvicidal activity preferential for the anopheline mosquito. Letter in appl. Micro. 21(5): 316 https://doi.org/10.1111/j.1472-765X.1995.tb01068.x
  27. Ohba, M., K. Aizawa and S. Shimizu. 1981. A new subspecies of Bacillus thuringiensis isolated in Japan: Bacillus thruingiensis subsp. tohokuensis (Serotype 17). J. Invertebr. Pathol. 38: 307 -309 https://doi.org/10.1016/0022-2011(81)90140-3
  28. Ohgushi, A., H. Satioh, W. Naoya., A. Uemori and M. Ohba. 2005. Cloning and characterization of two novel genes, cry24B and s1orf2, from a mosquitocidal strain of Bacillus thuringiensis servar sotto. Curr. Microbiol. 51: 131-136 https://doi.org/10.1007/s00284-005-7529-3
  29. Ohgushi, A., N. Wasano and N. Shisa. 2003. Characterizaion of mosquiocidal Bacillus thuringiensis serovar sotto strain isolated from Okinawa, Jap. J. Appl. Microbiol. 95: 982-989 https://doi.org/10.1046/j.1365-2672.2003.02068.x
  30. Padua, L.E., M. Ohba and K. Aizawai. 1984. Isolation of a Bacillus thruingiensis strian (Serotype 8a:8b) highly and selectively toxic against mosquito larvae. J. Invertebr. Pathol. 44: 12-17 https://doi.org/10.1016/0022-2011(84)90040-5
  31. Wasano, N., K.H. Kim, M. Ohba. 1998. Delta-endotoxin proteins associated with spherical parasporal inclusions of the four Lepidoptera -specific Bacillus thuringiensis strains. Appl. Micro. 84(4): 501 -508 https://doi.org/10.1046/j.1365-2672.1998.00371.x
  32. WHO. 2005. Guidelines for lavoratory and field testing of mosquito larvicides. World Health Organizaion communicable disease control, prevention and eradication. WHO pesticide evaluation scheme
  33. Yu, Y.M., M. Ohba and K. Aizawa. 1987. Synergistic effects of the 65- and 25-kilodalton proteins of Bacillus thuringiensis strain PG-14 (serotype 8a:8b) in mosquito larvicidal activity. J. Gen. Appl. Microbiol. 33: 459-462 https://doi.org/10.2323/jgam.33.459
  34. Yu, Y. M., M. Ohba and S. S. Gill. 1991. Characterization of mosquitocidal activity of Bacillus thuringiensis subsp. fukuokaensis crystal proteins. Appl. Environ. Microbiol. 57(4): 1075-1081
  35. Zhong, C., D.J. Ellar, A. Bishop, C. Johnson, S. Lin and E.R. Hart. 2000. Characterizaion of a Bacillus thuringiensis $\delta$-endotoxin which is toxic to insects in three orders. J. Invertebr. Pathol. 76: 131-139 https://doi.org/10.1006/jipa.2000.4962
  36. Zouari, Nabil and J. Samir. 1997. Purification and immunological characterization of particular delta-endotoxins from three strains of Bacillus thuringiensis. Biotechol. Lett. 19(8): 825-829 https://doi.org/10.1023/A:1018364915612

피인용 문헌

  1. Control Effects against Mosquitoes Larva of Bacillus thuringiensis subsp. israelensis CAB199 isolate according to Different Formulations vol.49, pp.2, 2010, https://doi.org/10.5656/KSAE.2010.49.2.151