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Gingival overgrowth can cause dental occlusion and

seriously interfere with mastication, speech, and dental

hygiene. It is observed in 25 to 81 % of renal transplant

patients treated with cyclosporine A (CsA). CsA-induced

gingival overgrowth (CIGO) is caused by quantitative

alteration of the extracellular matrix components,

particularly collagen. However, the molecular mechanisms

involved in the pathogenesis of CIGO remain poorly

understood, despite intense clinical and laboratory

investigations. The aim of the present work is to identify

differentially expressed genes closely associated with CIGO.

Human gingival fibroblasts were isolated by primary

explant culture of gingival tissues from five healthy subjects

(HGFs) and two patients with the CIGO (CIGO-HGFs).

The proliferative activity of CsA-treated HGFs and CIGO-

HGFs was examined using the MTT assay. The

identification of differentially expressed genes in CsA-

treated CIGO-HGF was performed by differential display

reverse transcriptase-polymerase chain reaction (RT-PCR)

followed by DNA sequencing. CsA significantly increased

the proliferation of two HGFs and two CIGO-HGFs,

whereas three HGFs were not affected. Seven genes,

including the beta subunit of prolyl 4-hydroxylase (P4HB)

and testican 1, were upregulated by CsA in a highly

proliferative CIGO-HGF. The increased P4HB and

testican-1 mRNA levels were confirmed in CsA-treated

CIGO-HGFs by semiquantitative RT-PCR. Furthermore,

CsA increased type I collagen mRNA levels and suppressed

MMP-2 mRNA levels, which are regulated by P4HB and

testican-1, respectively. These results suggest that CsA may

induce gingival overgrowth through the upregulation of

P4HB and testican-1, resulting in the accumulation of

extracellular matrix components.

Key words: cyclosporine A; gingival overgrowth; beta

subunit of proline 4-hydroxylase; testican-1

Introduction

Cyclosporin A (CsA) is the most frequently used

immunosuppressor for the prevention of the organ

transplant rejection because of its low toxicity and potential

application in the management of a variety of systemic

disorders (Wysocki et al., 1983). Despite its considerable

success as a truly selective immunosuppressant drug, CsA

therapy is also associated with various adverse side effects
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such as nephropathy, hypertension, hepatotoxicity, neurotoxicity,

and gingival overgrowth (Tyldesley and Rotter, 1984).

Gingival overgrowth is observed between 25 to 81 % of

renal transplant patients treated with CsA. The enlargement

of gingival tissue can allow the accumulation of oral

bacteria into the pockets followed by the marginal

periodontitis and systemic infection in some cases.

Therefore, the better understanding of the pathogenesis of

the drug-induced gingival overgrowth is one of the

important subjects in clinical periodontology.

Clinical and cellular studies associated with CsA-induced

gingival overgrowth (CIGO) have demonstrated that CsA

affects the gingival fibroblast proliferation (Bartold, 1989;

Park et al., 2007) and connective tissue extracellular matrix

(ECM) accumulation, resulting from the abnormal synthesis

of collagen and other ECM molecules (Tipton et al., 1991)

and the decreases of the activity of collagen degrading

enzymes (Barber et al., 1992; Schincaglia et al., 1992). In

addition, it has been suggested that the impaired ability of

matrix degradation may play an important role in CIGO

rather than the increase of the number of fibroblasts (Nares

et al., 1996). Therefore, studies have focused on interstitial

collagens (Barber et al., 1992; Gagliano et al., 2004) and

matrix metalloproteinases (MMPs) as the main targets of

CsA (Bolzani et al., 2000).

Type I collagen is the main collagen species in all layers of

gingival connective tissue. Its content is determined by a

dynamic balance between synthesis and degradation, and

disturbances in collagen turnover may be important in the

development of GO. While a stimulating effect of CsA on

type I collagen synthesis has been reported (Schincaglia et

al., 1992; Gagliano et al. 2004), some workers demon-

strated that collagen synthesis was not affected (Bartold et

al., 1989) or inhibited by CsA (Barber et al., 1992). Analysis

of immunohistological preparations in cases of GO

demonstrated that type IV collagen was present in

significantly higher amounts in the CsA-treated gingiva

than in healthy gingiva, but type III collagen was not

significantly greater (Bonnaure-Mallet et al., 1995).

MMP family of zinc-dependent endopeptidases is

responsible for the remodeling of ECM in both

physiological and pathological processes (Cotrim et al.,

2002). Although MMPs are broadly divided into interstitial

collagenases, gelatinases, stromelysins, and membrane-

type MMPs, each group can degrade essentially the ECM

components. Evidence has been shown that CsA inhibits

significantly the activity of MMP-1, MMP-2 and MMP-3

(Bolzani et al., 2000; Yamada et al., 2000; Cotrim et al.,

2002; Hyland et al., 2003; Gagliano et al., 2004; Kim et al.,

2008), thereby contributing to the extracellular matrix

accumulation found in CIGO. However, the molecular

mechanisms involved in the pathogenesis of CIGO remain

poorly understood despite intense clinical and laboratory

investigation. The aim of the present work is to explore the

molecular mechanisms of CIGO by identifying the

differentially expressed genes closely associated with

CIGO.

Materials and Methods

Chemicals

Cyclosporin A (CsA), 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyl-tetrazolium bromide (MTT), dimethylsulfoxide

(DMSO), isopropanol and chloroform were purchased from

Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s modified

Eagle’s medium (DMEM), fetal bovine serum (FBS),

phosphate buffered saline (PBS), antibiotic-antimycotic

mixture (10,000 units/ml penicillin G sodium, 10,000 µg/ml

streptomycin sulfate, and 25 µg/ml amphotericin B) and

trypsin-EDTA solution (0.25 % trypsin, 1 mM EDTA) were

purchased from Invitrogen Corporation (Grand Island, NY,

USA).

Cell cultures

Human gingival fibroblasts were obtained using primary

explant culture of gingival tissues from 5 healthy subjects

without evidences of inflammation, hyperplasia or the

history of taking drugs associated with gingival overgrowth,

and from 2 patients with the CsA-induced gingival

overgrowth, respectively. The donors were from 27 to 65

years old. Informed consent was obtained from each

subject. The protocol for the study was approved by

Institutional Review Board of Yonsei University College of

Dentistry, Seoul, Korea. Gingival biopsies were washed

with sterile PBS and plated in 25 cm
2
 culture flasks, and

incubated with DMEM supplemented with 20 % heat-

inactivated FBS and 2 % antibiotic-antimycotic mixture at

37
o
C in a humidified atmosphere of 5 % CO2. When

reaching confluence, the cells were trypsinized with 0.25 %

trypsin containing 1 mM EDTA. All experiments were

performed with cells between the third and sixth passages. 

Cell proliferation assay

Human gingival fibroblasts from healthy subjects (HGFs) or

patients with CIGO (CIGO- HGFs) were seeded at 1 × 10
3

cells/well in DMEM containing 10 % FBS in 96-well plates.

24 h later, the medium was replaced to fresh 2 % FBS-

DMEM containing the various concentrations of CsA

(0, 0.1, 1.0, 10, 100 ng/ml), and the cells were cultured for 3

days and 5 days. CsA (1 mg/ml) was dissolved in DMSO

and diluted with 2 % FBS-DMEM. Control cells received

0.01 % DMSO alone. When cells reached confluence, a

MTT solution (final concentration: 0.5 mg/ml) was added to

each well and incubated for 4 h at 37
o
C. The MTT solution

was removed and the remaining formazan products were

dissolved by 100 µl of DMSO. Absorbance was measured

at 570 nm using spectrophotometric microplate reader (Bio-

Rad, Hercules, CA, USA).
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Differential display reverse transcriptase-polymerase

chain reaction (DDRT-PCR)

Total cellular RNA was isolated from CIGO-HGFs treated

with CsA (0, 0.1, 1.0, 10 ng/ml) using TRIzol reagent (Life

technologies, Austria). DDRT-PCR was performed using

the RNAimage kit (GenHunter Corp., Nashville, TN, USA).

The DNase I-treated total RNA pools (200 ng per each

group) were subjected to reverse transcription in reverse

transcriptase buffer (25 mM Tris-HCl, pH 8.3, 37.6 mM

KCl, 1.5 mg MgCl2 and 5 mM DTT) with 5 unit/µl of

MMLV-reverse transcriptase, 20 µM dNTP mix and 0.2 µM

of guanosine-anchored oligo(dT) primer (HT11-G). The

cDNA samples were used for PCR in dilution of 1:10. PCR

(20 µl) was performed in PCR buffer (10 mM Tris-HCl, pH

8.4, 50 mM KCl, 1.5 mM MgCl2 and 0.001 % gelatin)

containing 2 µM dNTP, 0.2 µM of HT11-G, 0.2 µM of

arbitrary primer (from H-AP1 to H-AP10), 0.2 µl of α-

[
33
P]dATP (2000 Ci/mmole), and 0.05 unit/µl of AmpliTaq

DNA Polymerase (Perkin Elmer Inc., Wellesley, MA,

USA). The thermocycler (GeneAmp PCR System 9700,

Applied Biosystems, Australia) was programmed as

follows: 40 cycles at 94
o
C for 30 sec, 40

o
C for 2 min, and

72
o
C for 30 sec, and terminated with a final extension at

72
o
C for 5 min. Radiolabeled PCR products were separated

on 6 % denaturing polyacrylamide gel and the bands

visualized by autoradiography.

Cloning and DNA sequencing

The differentially expressed cDNA fragments identified

on the autoradiogram were excised from the gel, eluted by

boiling in water and reamplified by PCR with the same set

of primers and conditions used in DD-PCR. The reamplified

PCR products were cloned in PCR-TRAP vector using

PCR-TRAP cloning system (GenHunter Corp.) according

to the manufacturer’s instructions. Sequencing of cloned

cDNAs was performed at Takara Korea Biomedical Inc.

(Suwon, Korea) and the sequence alignment was performed

in GenBank of National Center for Biotechnology

Information (NCBI) using standard nucleotide-nucleotide

BLAST (blastn) program (http://www.ncbi.nlm.nih.gov/

BLAST/) and all EMBL libraries using Fasta3 program

(http://www.ebi.ac.uk/fasta3/).

RT-PCR

Semi-quantitative RT-PCR was performed to confirm the

results from DDRT-PCR and to investigate mRNA

expression levels of type I collagen and metalloproteinase-2

(MMP-2) in CIGO-HGFs treated by CsA. First-strand

cDNA was synthesized with 1 µg of total RNAs and 1 µM

of oligo-dT15 primer using MMLV Reverse Transcriptase

(Promega, Medison, CA, USA). Using the recombinant Taq

DNA polymerase kit (Takara, Shiga, Japan), PCR was

performed with 0.5 µg of first-strand cDNA and 20 pmole

of primers (Table 1). PCR reaction consisted of initial

denaturation at 94
o
C for 3 min, 30 cycles at 94

o
C for 40 sec,

52
o
C for 40 sec (61

o
C for type I collagen), and 72

o
C for 1

min, and final extension at 72
o
C for 10 min. The amplified

PCR products were electrophoresed on a 1.5 %-2 % agarose

gel and visualized by staining the gel with ethidium

bromide. The mRNA expression level of each gene was

normalized with that of glyceraldehyde-3-phsophate

dehydrogenase (GAPDH).

Statistical Analysis

Statistical analysis of the data was performed using the

unpaired Student’s t test. The p value less than 0.05 was

considered to be statistically significant.

Results

Among 5 HGFs isolated from 5 healthy subjects, the

proliferation of 2 HGFs was increased meaningly by CsA

treatment for 3 and 5days (Fig. 1A-a), whereas that of 3

HGFs were not changed (Fig.1A-b). In contrast, all CIGO-

HGFs from 2 patients with gingival overgrowth showed

significantly increased proliferation when cultured with

CsA for 3 and 5 days (Fig. 1B).

To identify the differentially expressed genes associated

with CsA-induced proliferation in CIGO-HGFs, DDRT-

PCR was performed. As described in Table 2, seven genes

were upregulated by CsA treatment. Among them, the

increased mRNA expression levels of β subunit of prolyl 4-

hydroxylase (P4HB; Fig. 2A) and testican-1 (Fig. 2B) were

confirmed in CsA-induced highly proliferated CIGO-HGFs

Table 1. Primers.

Target genes Sequences Product size(bp)

Testican 1
    Forward  5’-TGTGTGACCCAGGACTACCA-3’
    Reverse   5’-ACTTGTTGAACATCCAGCCC-3’

478

P4HB
    Forward  5’-GGAGATGACCAAGTACAAGC-3’
    Reverse   5’-GGCTTTGCGTATTACAGTTC-3’

573

MMP-2
    Forward  5’-GTCGCCCATCATCAAGTTC-3’
    Reverse   5’-CTCCCAAGGTCCATAGCTCA-3’

557

Type I collagen
    Forward  5’-GGCGGCCAGGGCTCCGAC-3’
    Reverse   5’-CCACGGGGTCTGGTCCTTAA-3’

347

GAPDH
    Forward  5’-GTCAGTGGTGGACCTGACCT-3’
    Reverse   5’-AGGGGTCTACATGGCAACTG-3’

420
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by semiquantitive RT-PCR. Furthermore, mRNA expression

levels of type I collagen (Fig. 3A) and MMP-2 (Fig. 3B)

were increased in CsA-induced highly proliferated CIGO-

HGFs.

Discussion

Gingival overgrowth (GO), seriously interfering with

occlusion, mastication, speech and dental hygiene, is

Fig. 1. The effect of CsA on the proliferation of human gingival fibroblasts. Five HGFs and two CIGO-HGFs were stimulated with CsA at
the indicated doses for 3 and 5 days, respectively. Cell proliferation was measured by MTT assay. Graph A shows the representatives of two
HGFs indicating the increased proliferation by CsA treatment (a), and three HGFs which were not affected by CsA treatment (b). The graph
B represents CsA-induced proliferation of two CIGO-HGFs. The results are expressed as the mean ± SE of triplicate assays. *P < 0.05,
**P < 0.01.

Table 2. Genes upregulated by CsA treatment in CIGO-HGFs.

Clone
No.

Acession No. Definition Homology

3 NM_000918.2

Homo sapiens procollagen-proline,
oxoglutarate 4-dioxygenase
(proline 4-hydroxylase), beta polypeptide 
(protein disulfide isomerase; thyroid hormone
binding protein p55) (P4HB), mRNA 

100

15 AF231124.1 Homo sapiens testican 1 mRNA, complete cds 96

17 NM_000366.3 Homo sapiens tropomyosin 1 (alpha) (TPM1), mRNA 100

24 AAN37426.1
NADH dehydrogenase (ubiquinone) 
(EC1.6.5.3) chain 2-human mitochondrion,
partial (84 %)

94

33 M94314.1
Homo sapiens ribosomal protein L30, mRNA, 
complete cds

95

34 BC000690.1
Homo sapiens ribosomal protein L24, mRNA 
(cDNA clone MGC:2240 IMAGE:3349215), 
complete cds

100

36 BC040354.1
Homo sapiens, similar to caldesmon 1,
clone MGC:21352 IMAGE:4753285, mRNA, 
complete cds

100
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observed in a significant number of cases treated with

immunosuppressants (CsA, etc), antiepileptics (phenytoin,

etc) and calcium channel antagonists (nifedipine, etc). It has

been known that the drugs resulting in GO directly or

indirectly influence both the growth and function of the

gingival fibroblasts, which play an important role in ECM

turnover through the production of both matrix

macromolecules and matrix-degrading enzymes such as

MMPs (Nares et al., 1996; Atilla and Kutukculer, 1998;

Swarga et al., 2001). Up to date, various cell culture studies

have focused on connective tissue extracellular matrix

accumulation to elucidate the pathogenesis of gingival

Fig. 2. mRNA expression of P4HB and testican 1 in CsA-stimulated CIGO-HGFs. Semi-quantitative RT-PCR was performed to investigate
mRNA expression levels of P4HB and testican I as described in Materials and Methods.

Fig. 3. mRNA expression of type I collagen and MMP-2 in CsA-stimulated CIGO-HGFs. Semi-quantitative RT-PCR was performed to
investigate mRNA expression levels of P4HB and type I collagen as described in Materials and Methods.
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overgrowth.

In this study, CsA treatment increased the proliferation of

two HGFs and all CIGO-HGFs, but that of three HGFs was

not changed by CsA, when cultured between 0.1 ng/ml and

100 ng/ml of CsA for 3 and 5 days. Two CIGO-HGFs,

rather than HGFs, proliferated more significantly by CsA

stimulation. These results suggest that the priming of the

gingival tissue with cyclosporin in human can lead to the

increased susceptibility of the fibroblasts on CsA in vitro.

To investigate the molecular mechanisms by which CsA

increases the proliferation of human gingival fibroblasts and

extracellular matrix accumulation, the differentially

expressed genes following CsA treatment were identified in

a highly proliferating CIGO-HGF by CsA stimulation using

DDRT-PCR. Among seven genes upregulated by CsA

treatment, P4HB is a multifunctional protein regarded as the

protein disulfide isomerase (PDI) (Koivu et al., 1987). PDI

catalyzes the formation of disulfide bonds in type I and II

procollagens (Koivu and Myllylä, 1987) and prolyl 4-

hydroxylase (Koivu and Myllylä, 1986), a key enzyme of

collagen synthesis. The function of PDI as a component of

prolyl 4-hydroxylase appears to be to maintain the catalytic

subunits in a soluble form rather than directly participating

in catalysis, and thereby participates during proline

hydroxylation (John et al., 1993). PDI also acts as a

molecular chaperone assisting the folding of polypeptides

(Cai et al., 1994). More recently, the association of PDI with

type I procollagen has been proposed to lead to endoplasmic

reticulum retention of type I procollagen, which is

composed of two proα1(I) chains and one proα2(I) chain

and intracellularly degraded immediately after its synthesis,

in corneal endothelial cells (Ko et al., 2004). Furthermore, it

has been reported that the proyl 4-hydroxylase inhibitor is

more effective for the inhibition of proliferation than for

inhibition of collagen synthesis of rat hepatic stellate cells

(Aoyagi et al., 2002). Therefore, our data demonstrate that

the overexpression of PDI mRNA by CsA in CIGO-HGFs

may increase cell proliferation while producing collagen, by

stabilizing prolyl 4-hydroxylase and delaying the intracellu-

lar degradation of type I procollagen. In addition, these

results can provide the molecular basis of other in vitro

studies that CsA causes a significant increase in the level of

type I procollagen and cell proliferation (Bolzani et al.,

2000).

Testican-1 is a highly conserved chimeric proteoglycan

carrying both chondroitin sulfate and heparan sulfate chains

(Alliei et al., 1993). Testican-1 has been shown to inhibit the

activation of pro-MMP-2 by either MT1-MMP or MT3-

MMP (Nakada et al., 2001) as well as the activity of

lysosomal enzyme cathepsin L (Bocock et al., 2003),

regulating the degradation of extracellular matrices (Nakada

et al., 2003). Recent studies have reported that the reduced

activity of cathepsin-L (Yamada et al., 2000) and matrix

metalloproteinases (Bozani et al., 2000; Cotrim et al., 2002;

Hyland et al., 2003; Gangliano et al., 2004) by CsA,

resulting in the inhibition of protein degradation in gingival

connective tissues, plays important roles in the pathogenesis

of CIGO. Our result suggests that the suppression of MMP-

2 expression in CIGO can be due to the overexpression of

testican-1 by CsA. Furthermore, alterations of type I

collagen and MMP-2 expression following the upregulation

of P4HB and testican-1 mRNA levels were assessed in

CIGO-HGF cells treated with CsA by RT-PCR. We

confirmed that CsA increased type I collagen mRNA levels

and suppressed MMP-2 mRNA levels.

In conclusion, CsA may induce the gingival overgrowth

through the upregulation of P4HB and testican-1, resulting

in the increase of collagen synthesis and the accumulation of

extracellular matrix components by inhibiting MMP-2

activity, in patients receiving CsA therapy. This is the first

report demonstrating that the accumulation of collagen in

CIGO regulates by P4HB and testican-1.
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