Real-time Imaging of Inositol 1,4,5-trisphosphate Movement in Mouse Salivary Gland Cells

  • Hong, Jeong-Hee (Department of Oral Biology, Brain Korea 21 Project, Oral Science Research Center, Center for Natural Defense System, Yonsei University College of Dentistry) ;
  • Lee, Syng-Ill (Department of Oral Biology, Brain Korea 21 Project, Oral Science Research Center, Center for Natural Defense System, Yonsei University College of Dentistry) ;
  • Shin, Dong-Min (Department of Oral Biology, Brain Korea 21 Project, Oral Science Research Center, Center for Natural Defense System, Yonsei University College of Dentistry)
  • 발행 : 2008.12.31

초록

Inositol 1,4,5-trisphosphate ($IP_3$) plays an important role in the release of $Ca^{2+}$ from intracellular stores into the cytoplasm in a variety of cell types. $IP_3$ translocation dynamics have been studied in response to many types of cell signals. However, the dynamics of cytosolic $IP_3$ in salivary acinar cells are unclear. A green fluorescent protein (GFP)-tagged pleckstrin homology domain (PHD) was constructed and introduced into a phospholipase C ${\delta}1$ (PLC ${\delta}1$) transgenic mouse, and then the salivary acinar cells were isolated. GFP-PHD was heterogeneously localized at the plasma membrane and intracellular organelles in submandibular gland and parotid gland cells. Application of trypsin, a G protein-coupled receptor activator, to the two types of cells caused an increase in GFP fluorescence in the cell cytoplasm. The observed time course of trypsin-evoked $IP_3$ movement in acinar cells was independent of cell polarity, and the fluorescent label showed an immediate increase throughout the cells. These results suggest that GFP-PHD in many tissues of transgenic mice, including non-cultured primary cells, can be used as a model for examination of $IP_3$ intracellular dynamics.

키워드

참고문헌

  1. Ashby MC, Craske M, Park MK, Gerasimenko OV, Burgoyne RD, Petersen OH, Tepikin AV. Localized $Ca^{2+}$ uncaging reveals polarized distribution of $Ca^{2+}$-sensitive Ca2+ release sites: mechanism of unidirectional $Ca^{2+}$+ waves. J Cell Biol. 2002;158:283-92 https://doi.org/10.1083/jcb.200112025
  2. Berridge, MJ, Bootman, MD, Lipp, P. Calcium-a life and death signal. Nature. 1998;395:645-8 https://doi.org/10.1038/27094
  3. Chung KM, Kim SH, Cho YK, Roper SD, Kim KN. Cholinergic and Neurokinergic Agonist-induced $Ca^{2+}$ Responses in Rat von Ebner's Gland Acinar Cells. Int J Oral Biol. 2006;31(3):99-105
  4. Cocks, T.M., B. Fong, J.M. Chow, G.P. Anderson, A.G. Frauman, R.G. Goldie, P.J. Henry, M.J. Carr, J.R. Hamilton, J.D. Moffatt. A protective role for protease-activated receptors in the airways. Nature. 1999;398(6723):156-60 https://doi.org/10.1038/18223
  5. Czech MP. PIP2 and PIP3: Complex Roles at the Cell Surface, Cell. 2000;100:603-6 https://doi.org/10.1016/S0092-8674(00)80696-0
  6. Falasca M, Logan SK, Lehto VP, Baccante G, Lemmon MA, Schlessinger J. Activation of phospholipase C$\gamma$ by PI3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 1998;17:414-22 https://doi.org/10.1093/emboj/17.2.414
  7. Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB. Crystal structure at 2.2 $\AA$ resolution of the pleckstrin homology domain from human dynamin. Cell. 1994;79:199-209 https://doi.org/10.1016/0092-8674(94)90190-2
  8. Fujii M, Ohtsubo M, Ogawa T, Kamata H, Hirata H, Yagisawa H. Real-Time Visualization of PH Domain-Dependent Translocation of Phospholipase C-$\delta$1 in Renal Epithelial Cells (MDCK): Response to Hypo-osmotic Stress. Biochem Biophy Res Commu. 1999;254:284-91 https://doi.org/10.1006/bbrc.1998.9936
  9. Harlan JE, Hajduk PJ, Yoon HS, Fesik SW. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature. 1994;371:168-70 https://doi.org/10.1038/371168a0
  10. Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M. Spatiotemporal Dynamics of Inositol 1,4,5-Trisphosphate That Underlies Complex Ca2+ Mobilization Patterns. Science. 1999;284:1527-30 https://doi.org/10.1126/science.284.5419.1527
  11. Kawabata A, Kinoshita M, Nishikawa H, Kuroda R, Nishida M, Araki H, Arizono N, Oda Y, Kakehi K. The proteaseactivated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection J Clin Invest. 2001;107:1443-50 https://doi.org/10.1172/JCI10806
  12. Kawabata A, Kuroda R, Nishida M, Nagata N, Sakaguchi Y, Kawao N, Nishikawa H, Arizono N, Kawai K. Proteaseactivated receptor-2 (PAR-2) in the pancreas and parotid gland: Immunolocalization and involvement of nitric oxide in the evoked amylase secretion. Life Sci. 2002;71:2435-46 https://doi.org/10.1016/S0024-3205(02)02044-1
  13. Kawabata A. Gastrointestinal functions of proteinase-activated receptors. Life Sci. 2003;74(2-3):247-54 https://doi.org/10.1016/j.lfs.2003.09.011
  14. Kim SH, Cho YK, Chung KM, Kim KN. Purinergic Receptors Play Roles in Secretion of Rat von Ebner Salivary Gland. Int J Oral Biol.2006;31(4)141-8
  15. Lemmon MA, Ferguson KM, O'Brein R, Sigler PB, Schlessinger J. Specific and high-affinity binding of inositol phosphate to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA. 1995;92:10472-6
  16. Matsu-ura T, Michikawa T, Inoue T, Miyawaki A, Yoshida M, Mikoshiba K. Cytosolic inositol 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in living cells. J Cell Biol. 2006;173:755-65 https://doi.org/10.1083/jcb.200512141
  17. Mikoshiba K. $IP_3$ receptor/$Ca^{2+}$ channel: from discovery to new signaling concepts. J Neurochem. 2007;102:1426${\circ}C$46
  18. Musacchio A, Gibson T, Rice P, Thompson J, Saraste M. The PH domain: a common piece in the structural pathcwork of signalling proteins. Trends Biochem Sci. 1993;18:343-8 https://doi.org/10.1016/0968-0004(93)90071-T
  19. Nishikawa H. Roles of Protease-Activated Receptor-2 (PAR-2), a G Protein-Coupled Receptor, in Modulation of Exocrine Gland Functions, Yakugaku Zassi. 2006;126(7):481-8 https://doi.org/10.1248/yakushi.126.481
  20. Payrastre Bdes, Key players in cell signaling, in time and space, Cell Signal. 2001;13:377-87 https://doi.org/10.1016/S0898-6568(01)00158-9
  21. Rameh LE, Arvidsson A, Carraway III KL, Couvillon AD, Rathbun G, Crompton A, VanRentherghem B, Czech MP, Ravichandran KS, Burakoff SJ, et al. A comperative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem. 1997;272:22059-66 https://doi.org/10.1074/jbc.272.35.22059
  22. Sato M, Ueda Y, Shibuya M, Umezawa Y. Locating inositol 1,4,5-trisphosphate in the nucleus and neuronal dendrites with genetically encoded fluorescent indicators. Anal Chem. 2005;77:4751${\circ}C$8
  23. Shin DM, Luo X, Wilkie TM, Miller LJ, Peck AB, Humphreys-Beher MG, Muallem S. Polarized Expression of G Protein-coupled Receptors and an All-or-None Discharge of $Ca^{2+}$ Pools at Initiation Sites of $Ca^{2+}_i$ Waves in Polarized Exocrine Cells J Biol Chem. 2001;276(47):44146-56 https://doi.org/10.1074/jbc.M105203200
  24. Shin DM, Dehoff M, Luo X, Kang SH, Tu J, Nayak SK, Ross EM, Worley PF, Muallem S. Homer 2 tunes G protein coupled receptors stimulus intensity by regulating RGS proteins and PLC $\beta$ GAP activities. J Cell Biol. 2003;162:293-303 https://doi.org/10.1083/jcb.200210109
  25. Simonsen A, Wurmser AE, Emr SD, Stenmark H. The role of ph, Missy K, Guiriato S, Bodin S, Plantavid M, Gratacap MP. Phosphoinositiosphoinositides in membrane transport. Curr Opi in Cell Biol. 2001;13:485-92 https://doi.org/10.1016/S0955-0674(00)00240-4
  26. Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y. Fluorescent Biosensor for Quantitative Real-time Measurements of Inositol 1,4,5-Trisphosphate in Single Living Cells, J Biol Chem. 2004;279:38095-98 https://doi.org/10.1074/jbc.C400312200
  27. Varnai P, Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: Calcium-and agonist-induced dynamic changes and relationship to $myo-^3$ H inositol-labeled phosphoinositide pools. J Cell Biol. 1998;143(2):501-10 https://doi.org/10.1083/jcb.143.2.501