DOI QR코드

DOI QR Code

Improvement of Coating Properties of Metal/diamond Composite Through Ni Coated Diamond in the Kinetic Spraying Process

저온 분사 공정에서 니켈이 코팅된 다이아몬드 적용을 통한 금속/다이아몬드 복합재료의 코팅성 향상

  • Na, Hyun-Taek (Kinetic Spray Coating Laboratory (NRL), Division of Materials Science & Engineering, Hanyang University) ;
  • Bae, Gyu-Yeol (Kinetic Spray Coating Laboratory (NRL), Division of Materials Science & Engineering, Hanyang University) ;
  • Kang, Ki-Cheol (Kinetic Spray Coating Laboratory (NRL), Division of Materials Science & Engineering, Hanyang University) ;
  • Kim, Hyung-Jun (Welding Research Center, Research Institute of Industrial Science & Technology) ;
  • Lee, Chang-Hee (Kinetic Spray Coating Laboratory (NRL), Division of Materials Science & Engineering, Hanyang University)
  • 나현택 (한양대학교 신소재공학부) ;
  • 배규열 (한양대학교 신소재공학부) ;
  • 강기철 (한양대학교 신소재공학부) ;
  • 김형준 (포항산업과학연구원 용접센터) ;
  • 이창희 (한양대학교 신소재공학부)
  • Published : 2008.12.31

Abstract

Generally, deposition mechanism of diamond particle is mainly embedding effect in the kinetic spray process. Accordingly, in spite of high cost, helium gas was employed as process gas to get high diamond fraction in the composite coating. In this study, the deposition behavior of bronze/diamond by kinetic spray process was compared using different process gas (helium and nitrogen). Bare (mean size of $5{\mu}m$, $20{\mu}m$) and nickel coated diamond (mean size of $26{\mu}m$) were deposited on Al 6061-T6 substrate with fixed process temperature and pressure. For comparison with experimental results, plastic deformation behavior of nickel layer was simulated by finite element analysis (using ABAQUS/Explicit 6.7-2). The size, broken ratio, and fraction of diamond in the composite coating were analyzed through scanning electron microscopy and image analysis method. The uniform distribution and deposition efficiency of diamond particles in the coating layer could be achieved by tailoring the physical properties of the feedstock.

Keywords

References

  1. R.C. Dykhuizen, M.F. Smith, J. Therm. Spray Technol., 7-2 (1998) 205-212
  2. H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Acta Mater., 51 (2003) 4379-4394 https://doi.org/10.1016/S1359-6454(03)00274-X
  3. A.N. Paryrin, S.V. Klinkov, V.F. Kosarev, International Thermal Spray Conference and Exhibition ITSC 2003 Proceedings, (2003) 27
  4. T.H. Van Steenkistea, J.R. Smitha, R.E. Teetsa, J.J. Moleskia, D.W. Gorkiewicza, R.P. Tisona, D.R. Marantzb, K.A. Kowalskyb, W.L. Riggs IIc, P.H. Zajchowskid, B. Pilsnere, R.C. McCunef, K. J. Barnettg, Surf. Coat. Technol., 111-1 (1999) 62-71
  5. W. Tillmann, E. Vogli, R. Rechlin, F.W. Bach, K. Mohwald, Z. Babiak, T. Rothardt, International Thermal Spray Conference and Exhibition ITSC 2004 Proceedings, (2004) 4-8
  6. S. Shin, Y. Xiong, Y. Ji, H.J. Kim, C. Lee, Appl. Surf. Sci., 254 (2008) 2269-2275 https://doi.org/10.1016/j.apsusc.2007.09.017
  7. J. Wu, H. Fang, S.H. Yoon, H.J. Kim, C. Lee, Appl. Surf. Sci., 252 (2005) 1368-1377 https://doi.org/10.1016/j.apsusc.2005.02.108
  8. S. Shin, Effects of Parameters and Process Parameters on the Deposition Characteristics of a Hard/soft-particles Composite in Kinetic Spraying, MS Thesis Hanyang Univ. (2007)
  9. A.P. Alkhimov, A.N. Paryrin, V.F. Kosarev, N.J. Nesterovich, M.M. Shuspanov, Gas-dynamic Spray Method for Applying a Coating, US Patent 5,302,414, (1994)
  10. H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Acta Mater., 51 (2003) 4379-4394 https://doi.org/10.1016/S1359-6454(03)00274-X
  11. G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, Acta Mater., 56 (2008) 4858-4868 https://doi.org/10.1016/j.actamat.2008.06.003
  12. H.J. Kim, J.H. Jang, C. Lee, J. Kor. Inst. Met. Mater., 45 (2007) 409-415