DOI QR코드

DOI QR Code

The Research and Development Trend of Cathode Materials in Lithium Ion Battery

리튬이차전지용 양극재 개발 동향

  • 박홍규 (LG화학기술연구원 배터리 연구소)
  • Published : 2008.08.31

Abstract

The cathode materials for lithium ion battery have been developed in accordance with the battery performance. $LiCoO_2$ initially adapted at lithium ion battery is going to be useful even at the charging voltage of 4.3 V by surface treatment or doping which drastically improved the performance of $LiCoO_2$. On the other hand, the complicate and multiple functions of recent electronic equipments required higher operational voltage and higher capacity than ever, which is going to be driving force for developing new cathode materials. Some of them are $LiNi_{1-x}{M_xO_2}$, $Li[Ni_{x}Mn_{y}Co_{z}]O_{2}$, $Li[{Ni}_{1/2}{Mn}_{1/2}]O_{2}$. Other new type of cathode materials having high safety is also developed to apply for HEV (hybrid electrical vehicle) and power tool applications. ${LiMn}_{2}{O}_{4}$ and $LiFePO_4$ are famous for highly stable material, which are expected to give contribution to make safer battery. In near future, the various materials having both capacity and safety will be developed by new technology, such as solid solution composite.

리튬이차전지용 양극재는 전지 성능발전과 더불어 다양하게 발전되어 왔다. 처음으로 채용된 $LiCoO_2$는 초기의 부족한 성능을 도핑이나 표면개질이라는 기술을 채용하여 지속적인 발전을 거듭하면서 최근 4.3V에 가까운 충전전압에서도 적용 가능하게 되었다. 한편으로 응용기기가 복잡해지면서 요구되는 특성도 한층 강화되었다. 높은 작동전압 뿐만 아니라 고용량이 요구되면서 새로운 재료에 대한 연구개발이 시작되었고, 그 중에서도 ${LiNi}_{1-x}{M_xO_2}$, $Li[Ni_{x}Mn_{y}Co_{z}]O_{2}$, $Li[{Ni}_{1/2}{Mn}_{1/2}]O_{2}$등 다양한 재료들이 개발되기에 이르렀다. 최근에는 고유가에 따라 전기자동차용 개발이활발해지면서 고안전성의 새로운 재료가 필요하게 되었고, 이러한 요구에 수렴하여 ${LiMn_2}{O_4}$, $LiFePO_4$와 같은 안전성이 매우 우수한 재료가 개발되었다. 향 후 양극재 부분은 이외에도 다양한 상들이 고용량과 동시에 안전성이 뛰어난 고용체를 이루고 있는 복합체 양극재를 비롯하여 다양한 재료들이 개발될 것으로 여겨진다.

Keywords

References

  1. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull., 15, 1159 (1993)
  2. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001) https://doi.org/10.1038/35104644
  3. M. Wakihara, Materials Science and Engineering R33, 109-134 (2001)
  4. R. J. Gummow, D. C. Liles, and M. M. Thackeray, Mater. Res. Bull. 28, 235 (1993) https://doi.org/10.1016/0025-5408(93)90157-9
  5. Y. Nishi, Journal of Power Sources, 100, 101-106 (2001) https://doi.org/10.1016/S0378-7753(01)00887-4
  6. M. mladenov, R. Stoyanova, E. Zhecheva, and S. Vassilev, Electrochemistry Comm., 3, 410-416 (2001) https://doi.org/10.1016/S1388-2481(01)00192-8
  7. D. D. MacNail and J. R. Dahn, Journal of The Electrochemical Society, 149, A912-A919 (2002) https://doi.org/10.1149/1.1483865
  8. D. D. MacNail, L. Christensen, J. Landucci, J. M. Paulsen, and J. R. Dahn, Journal of The Electrochemical Society, 147, 970-979 (2000) https://doi.org/10.1149/1.1393299
  9. R. J. Gummow, M. M. Thackeray, W. I. F. David, and S. Hull, Mater. Res. Bull. 27, 327 (1992) https://doi.org/10.1016/0025-5408(92)90062-5
  10. A. M. Adnersson, D. P. Abraham, R. Haasch, S. Maclaren, J. Liu, and K. Amine, Journal of The Electrochemical Society, 149, A1358-A1369 (2002) https://doi.org/10.1149/1.1505636
  11. A. M. Kannan et al., Electrochem. Solid State Lett., 5, A167 (2002) https://doi.org/10.1149/1.1482198
  12. (스피넬전기화학)J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc. 138, 2859 (1991) https://doi.org/10.1149/1.2085330
  13. T. Ohzuku, K. Ariyoshi, Y. Makimura, N. Yabuuchi, and K. Sawai, Electrochemistry, 73, (2005)
  14. Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, and T. Ohzuku, Journal of Power Sources, 119-121, 644-648 (2003) https://doi.org/10.1016/S0378-7753(03)00194-0
  15. Y. Koyama, N. Yabuuchi, I. Tanaka, H. Adachi, and T. Ohzuku, Journal of Electrochemical Soc. 151, A1545-A1551 (2004) https://doi.org/10.1149/1.1784823
  16. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997) https://doi.org/10.1149/1.1837571
  17. D. Morgan, A. Van der Ven, andG. Ceder, Electroche. Solid-State Lett. 7, A30 (2004) https://doi.org/10.1149/1.1633511
  18. M. S. Whittingham, Y. Song, S. Lutta, P. Y. Zavalij, and N. A. Cheronva, J. Mater. Chem., 15, 3362 (2005) https://doi.org/10.1039/b501961c
  19. A. Yamada and S.-C. Chung, J. Electrochem. Soc., 148, A960 (2001) https://doi.org/10.1149/1.1385377
  20. A. Yamada, et al., J. Power Sources, 119, 232 (2003) https://doi.org/10.1016/S0378-7753(03)00239-8
  21. L. Sebastaian and J. Gopalakrishman, J. Mater. Chem., 13, 433-441 (2003) https://doi.org/10.1039/b211367h
  22. S. Venkatraman, Y. Shin, and A. Manthiram, Electrochem. Solid State Lett. 6, A9 (2003) https://doi.org/10.1149/1.1525430
  23. J. Cho, Y. J. Kim, and B. Park, Chem. Mater., 12, 3788-3791 (2000) https://doi.org/10.1021/cm000511k
  24. J. Cho et al., Angew. Chem. Int. Ed. 40, 3367 (2001) https://doi.org/10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
  25. T. Ohzuku, A. Ueda, and M. Nagayama, J. Electrochem. Soc., 140, 1862 (1993) https://doi.org/10.1149/1.2220730
  26. S. Sivaprakash, S. B. Majumder, S. Nieto, and R. S. Katiyar, Journal of Power Sources 170, 433-440 (2007) https://doi.org/10.1016/j.jpowsour.2007.04.029
  27. K. Kim et al., Electrochem. Acta, 50, 3764 (2005) https://doi.org/10.1016/j.electacta.2005.01.022
  28. C. P. Grey, W.-S. Yoon, J. Reed, and G. Ceder, Electrochemical and Solid-State Letters, 7, A290-A293 (2004) https://doi.org/10.1149/1.1783113
  29. J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc., 138, 2859 (1991) https://doi.org/10.1149/1.2085330
  30. H. Abiko, M. Hibino, and Tetsuichi Kudo, Journal of Power Sources, 124, 526-532 (2003) https://doi.org/10.1016/S0378-7753(03)00794-8
  31. K. Araki and N. Sato, Journal of Power Sources, 24, Issue 1, 1 October 124-132 (2003)
  32. S.-W. Lee, K.-S. Kim, H.-S. Moon, H.-J. Kim, B.-W. Cho, W.-I. Cho, J.-B. Ju, and J.-W. Park, Journal of Power Sources, Volume 126, Issues 1-2, 16 February 2004, Pages150-155 https://doi.org/10.1016/j.jpowsour.2003.08.032
  33. J. B. Goodenough, A. K. Padhi, K. S. Nanjundaswamy, and C. Masquelier, US pat, 5910382 (1999)
  34. A. Yamada, S. C. Chung, K. Hinouma, J. Electrochem. Soc. 148, A224 (2001) https://doi.org/10.1149/1.1348257
  35. A. Yamada, Y. Kudo, and K.-Y Liu J. Electrochem. Soc. 148, A747 (2001) https://doi.org/10.1149/1.1375167
  36. 1. Z. Lu, D. D. MacNeil, and J. R. Dahn, Electrochem Solid-State Lett. 4 A191 2 (2001) https://doi.org/10.1149/1.1407994
  37. T. Ohzuku and Y. Makimura, Chem. Lett. 7, 642 (2001)
  38. Z. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett. 4, A200 (2001) https://doi.org/10.1149/1.1413182
  39. Z. Lu and J. R. Dahn, J. Electrochem. Soc. 149, A815 (2002) https://doi.org/10.1149/1.1480014
  40. A. D. Robertson and P. G. Bruce, Chem. Mater. 15, 1984 (2003) https://doi.org/10.1021/cm030047u
  41. C. W. Park et al., Materials Research Bull., 42, 1374 (2007) https://doi.org/10.1016/j.materresbull.2006.09.026
  42. J. Jiang, K. W. Eberman, L. J. Krause, and J. R. Dahn, J. Electrochem. Soc., 152, A1879 (2005) https://doi.org/10.1149/1.1995690
  43. 홍영식, 리튬이온 이차전지용 전극 재료 개발, 화학세계, 46, 45 (2006)
  44. Y.-S. Hong, Y. J. Park, K. S. Ryu, and S. H. Chang, Solid State Ionics, 176, 1035-1042 (2005) https://doi.org/10.1016/j.ssi.2005.02.006

Cited by

  1. Recovery of Lithium and Leaching Behavior of NCM Powder by Carbon Reductive Treatment from Li(NCM)O2System Secondary Battery Scraps vol.22, pp.4, 2013, https://doi.org/10.7844/kirr.2013.22.4.62
  2. Synthesis of nano-sized Ga2O3 powders by polymerized complex method vol.23, pp.6, 2013, https://doi.org/10.6111/JKCGCT.2013.23.6.302
  3. Synthesis of Ga2O3powders by precipitation method vol.24, pp.1, 2014, https://doi.org/10.6111/JKCGCT.2014.24.1.008
  4. Quantitative Analysis of Patents Concerning Cathode Active Materials for Lithium-Ion Secondary Batteries Based on Layer Structure vol.26, pp.3, 2015, https://doi.org/10.14478/ace.2015.1026
  5. Recovery of Lithium and Leaching Behavior of NCM Powder by Hydrogen Reductive Treatment from NCM System Li-ion Battery Scraps vol.22, pp.3, 2013, https://doi.org/10.7844/kirr.2013.22.3.43
  6. The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.149
  7. Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode vol.19, pp.1, 2016, https://doi.org/10.5229/JKES.2016.19.1.1
  8. Optimization of Lithium in Li1+x[Mn0.720Ni0.175Co0.105]O2as a Cathode Material for Lithium Ion Battery vol.2, pp.2, 2011, https://doi.org/10.5229/JECST.2011.2.2.097
  9. A Study on the Recovery of Li<sub>2</sub>CO<sub>3</sub> from Cathode Active Material NCM(LiNiCoMnO<sub>2</sub>) of Spent Lithium Ion Batteries vol.25, pp.4, 2018, https://doi.org/10.4150/KPMI.2018.25.4.296