DOI QR코드

DOI QR Code

Enhancement in Selectivity of Nonenzymatic Glucose Sensors Based on Mesoporous Platinum by A.C. Impedance

  • Park, Se-Jin (Basic Science Research Institute, Sungshin Women's University) ;
  • Boo, Han-Kil (The Cooperative Center for Nano-Bio Applied Technology, Sungshin Women's University)
  • Published : 2008.08.31

Abstract

Improvement of the selectivity of nonenzymatic glucose based on mesoporous platinum ($H_1$-ePt) by using A.C. impedance is reported. The idea of the present work is based on the novel effect of the mesoporous electrode that the apparent exchange current due to glucose oxidation remarkably grows although the reaction kinetics on the surface is still sluggish. It is expected that the enlarged apparent exchange current on the mesoporous electrode can raise the sensitivity of admittance in A.C. impedance to glucose concentration. At a low frequency, A.C. impedance could become more powerful. The admittance at 0.01 Hz is even more sensitive to glucose than to ascorbic acid while amperometry exhibits the inverse order of sensitivity. This is the unique behavior that is neither observed by A.C. impedance on flat platinum electrode nor obtained by amperometry. The study shows how the combination of A.C. impedance and nano-structured surface can be applied to the detection of sluggish reaction such as electrochemical oxidation of glucose.

Keywords

References

  1. Y. B. Vassilyev, O. A. Khazova, and N. N. Nikolaeva, "kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum" J. Electroanal. Chem., 196, 105 (1985) https://doi.org/10.1016/0022-0728(85)85084-1
  2. B. Beden, F. Largeaud, K. B. Kokoh, and C. Lamy, "Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of -glucose: Identification of reactive intermediates and reaction products" Electrochim. Acta, 41, 701 (1996) https://doi.org/10.1016/0013-4686(95)00359-2
  3. I. T. Bae, E. Yeager, X. Xing, and C. C. Liu, "In situ infrared studies of glucose oxidation on platinum in an alkaline medium" J. Electroanal. Chem., 309, 131 (1991) https://doi.org/10.1016/0022-0728(91)87009-S
  4. M. Sakamoto and K. Takamura, "Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose" Bioelectrochem. Bioener., 9, 571 (1982) https://doi.org/10.1016/0302-4598(82)80033-0
  5. G. Kokkinidis and N. Xonoglou, "Comparative study of the electrocatalytic influence of underpotential heavy metal adatoms on the anodic oxidation of monosaccharides on Pt in acid solutions" Bioelectrochem. Bioener., 14, 375 (1985) https://doi.org/10.1016/0302-4598(85)80010-6
  6. G. Wittstock, A. Strubing, R. Szargan, and G. Werner, "Glucose oxidation at bismuth-modified platinum electrodes" J. Electroanal. Chem., 444, 61 (1998) https://doi.org/10.1016/S0022-0728(97)00559-7
  7. X. Zhang, K.-Y. Chan, J.-K. You, Z.-G. Lin, and A. C. C. Tseung, "Partial oxidation of glucose by a $PtWO_{3}$ electrode" J. Electroanal. Chem., 430, 147 (1997) https://doi.org/10.1016/S0022-0728(97)00138-1
  8. Y. Sun, H. Buck, and T. E. Mallouk, "Combinatorial Discovery of Alloy Electrocatalysts for Amperometric Glucose Sensors" Anal. Chem., 73, 1599 (2001) https://doi.org/10.1021/ac0015117
  9. S. Park, T. D. Chung, and H. C. Kim, "Nonenzymatic glucose detection using mesoporous platinum" Anal. Chem., 75, 3046 (2003) https://doi.org/10.1021/ac0263465
  10. E. Shoji, and M. S. Freund, "Potentiometric Sensors Based on the Inductive Effect on the pKa of Poly(aniline): A Nonenzymatic Glucose Sensor" J. Am. Chem. Soc., 123, 3383 (2001) https://doi.org/10.1021/ja005906j
  11. E. Shoji and M. S. Freund, "Potentiometric Saccharide Detection Based on the pKa Changes of Poly(aniline boronic acid)" J. Am. Chem. Soc., 124, 12486 (2002) https://doi.org/10.1021/ja0267371
  12. S. Arimori, S. Ushiroda, L. M. Peter, A. T. A. Jenkins, and T. D. James, "A modular electrochemical sensor for saccharides" Chem. Commun., 2368 (2002)
  13. S.-J. Choi, B.-G. Choi, and S.-M. Park, "Electrochemical Sensor for Electrochemically Inactive -D(+)-Glucose Using -Cyclodextrin Template Molecules " Anal. Chem., 74, 1998 (2002) https://doi.org/10.1021/ac0107913
  14. B. Gollas, J. M. Elliott, and P. N. Bartlett, "Electrodeposition and properties of nanostructured platinum films studied by quartz crystal impedance measurements at 10MHz" Electrochim. Acta, 45, 3711 (2000) https://doi.org/10.1016/S0013-4686(00)00464-3
  15. A. J. Bard and L. R. Faulkner, "Electrochemical methods: Fundamentals and Applications", Wiley, New York (2001)
  16. G. S. Attard, J. C. Glyde, and C. G. Goeltner, "Liquidcrystalline phases as templates for the synthesis of mesoporous silica" Nature, 378, 366 (1995) https://doi.org/10.1038/378366a0
  17. G. S. Attard, C. G. Goeltner, J. M. Corker, S. Henke, and R. H. Templer, "Liquid-crystal templates for nanostructured metals" Angew. Chem. Int. Ed., 36, 1315 (1997) https://doi.org/10.1002/anie.199713151
  18. J. M. Elliott, P. R. Birkin, P. N. Bartlett, and G. S. Attard, "Platinum Microelectrodes with Unique High Surface Areas" Langmuir, 15, 7411 (1999) https://doi.org/10.1021/la9908945
  19. S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle, and G. Denuault, "Detection of hydrogen peroxide at mesoporous platinum microelectrodes" Anal. Chem., 74, 1322 (2002) https://doi.org/10.1021/ac011052p
  20. G. S. Attard, M. Edgar, and C. G. Goeltner, "Inorganic nanostructures from lyotropic liquid crystal phases" Acta Mater., 46, 751 (1998) https://doi.org/10.1016/S1359-6454(97)00256-5
  21. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J.M. Elliott, and J. R. Owen, "Lyotropic Liquid Crystalline Properties of Nonionic Surfactant/H2O/Hexachloroplatinic Acid Ternary Mixtures Used for the Production of Nanostructured Platinum" Langmuir, 14, 7340 (1998) https://doi.org/10.1021/la980625z
  22. P. R. Birkin, J. M. Elliott, and Y. E. Watson, "Electrochemical reduction of oxygen on mesoporous platinum microelectrodes" Chem. Commun., 1693 (2000)
  23. J. M. Elliott and J. R. Owen, "Electrochemical impedance characterisation of a nanostructured (mesoporous) platinum film" Phys. Chem. Chem. Phys., 2, 5653 (2000) https://doi.org/10.1039/b006462i
  24. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, "Mesoporous platinum films from lyotropic liquid crystalline phases " Science, 278, 838 (1997) https://doi.org/10.1126/science.278.5339.838
  25. J. M. Elliott, G. S. Attard, P. N. Bartlett, N. R. B. Coleman, D. A. S. Merckel, and J. R. Owen, "Nanostructured Platinum (HI-ePt) Films: Effects of Electrodeposition Conditions on Film Properties" Chem. Mater., 11, 3602 (1999) https://doi.org/10.1021/cm991077t
  26. P. N. Bartlett and S. Guerin, "A micromachined calorimetric gas sensor: an application of electrodeposited nanostructured palladium for the detection of combustible gases" Anal. Chem., 75, 126 (2003) https://doi.org/10.1021/ac026141w
  27. J. J. Jiang and A. Kucernak, "Oxygen reduction studies of templated mesoporous platinum catalysts" Electrochemical and Solid State Letters, 3, 559 (2000) https://doi.org/10.1149/1.1391208
  28. J. Jiang and A. Kucernak, "Electrooxidation of small organic molecules on mesoporous on precious metal catalysts I: CO and methanol on platinum" J. Electroanal. Chem., 533, 153 (2002) https://doi.org/10.1016/S0022-0728(02)01083-5
  29. J. Jiang and A. Kucernak, "Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid" J. Electroanal. Chem., 520, 64 (2002) https://doi.org/10.1016/S0022-0728(01)00739-2
  30. S. Iyengar, E. A. H. Hall, N. G. Skinner, and J. J. Gooding, "Frequency domain selection of the peroxide signal for amperometric biosensors" Electroanalysis, 10, 1089 (1998) https://doi.org/10.1002/(SICI)1521-4109(199811)10:16<1089::AID-ELAN1089>3.0.CO;2-M
  31. S. Iyengar and E. A. H. Hall, "Selective monitoring of the hydrogen peroxide signal in the presence of ascorbic acid. Part II: Preliminary practical realization of applying immittance spectroscopy" Electroanalysis, 13, 517 (2001) https://doi.org/10.1002/1521-4109(200105)13:7<517::AID-ELAN517>3.0.CO;2-U
  32. S. Iyengar and E. A. H. Hall, "Applying immittance spectroscopy to monitoring hydrogen peroxide in the presence of ascorbic acid. Part I: Theoretical considerations" Electroanalysis, 13, 437 (2001) https://doi.org/10.1002/1521-4109(200104)13:6<437::AID-ELAN437>3.0.CO;2-U
  33. S. Iyengar and E. A. H. Hall, "Data from overlapping signals at an amperometric electrode using admittance vectors" J. Electroanal. Chem., 521, 61 (2002) https://doi.org/10.1016/S0022-0728(01)00732-X
  34. K. B. Kokoh, F. Hahn, A. Metayer, and C. Lamy, "FTIR spectroelectrochemical investigation of the electrocatalytic oxidation of ascorbic acid at platinum electrodes in acid medium" Electrochim. Acta, 47, 3965 (2002) https://doi.org/10.1016/S0013-4686(02)00368-7
  35. M. Brezina, J. Koryta, T. Loucka, D. Marsikova, and J. Pradac, "Adsorption and kinetics of oxidation of ascorbic acid at platinum electrodes" J. Electroanal. Chem., 40, 13 (1972) https://doi.org/10.1016/S0022-0728(72)80121-9
  36. P. Karabinas and D. Jannakoudakis, "Kinetic parameters and mechanism of the electrochemical oxidation of L-ascorbic acid on platinum electrodes in acid solutions" J. Electroanal. Chem., 160, 159 (1984) https://doi.org/10.1016/S0022-0728(84)80122-9
  37. S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism" Electrochim. Acta, 43, 579 (1998) https://doi.org/10.1016/S0013-4686(97)00125-4
  38. S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: effect of potential" Electrochim. Acta, 43, 2015 (1998) https://doi.org/10.1016/S0013-4686(97)10116-5
  39. S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature" Electrochim. Acta, 44, 2455 (1999) https://doi.org/10.1016/S0013-4686(98)00369-7
  40. S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: phosphate buffer dependence" Electrochim. Acta, 44, 4573 (1999) https://doi.org/10.1016/S0013-4686(99)00183-8
  41. S. B. Hall, E. A. Khudaish, and A. L. Hart, "Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: inhibition by chloride" Electrochim. Acta, 45, 3573 (2000) https://doi.org/10.1016/S0013-4686(00)00481-3

Cited by

  1. Mesoporous Materials-Based Electrochemical Sensors vol.27, pp.6, 2015, https://doi.org/10.1002/elan.201400628
  2. Electrodeposition and electrocatalytic properties of Pt/Ni–Co nanowires for non-enzymatic glucose detection vol.554, 2013, https://doi.org/10.1016/j.jallcom.2012.10.186
  3. Sensitivity and Selectivity of Porous Electrodes in Heterogeneous Liquid-Based Catalytic Reactions: 3D Simulation Study vol.163, pp.10, 2016, https://doi.org/10.1149/2.0151610jes