DOI QR코드

DOI QR Code

Ethanol Electro-Oxidation and Stability of Pt Supported on Sb-Doped Tin Oxide

안티몬 도핑된 주석 산화물에 담지된 백금 촉매의 에탄올 산화 반응 및 안정성 연구

  • Lee, Kug-Seung (School of Chemical & Biological Engineering & Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Park, Hee-Young (School of Chemical & Biological Engineering & Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Jeon, Tae-Yeol (School of Chemical & Biological Engineering & Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Sung, Yung-Eun (School of Chemical & Biological Engineering & Research Center for Energy Conversion & Storage, Seoul National University)
  • 이국승 (서울대학교 화학생물공학부 및 에너지 변환 저장 연구센터) ;
  • 박희영 (서울대학교 화학생물공학부 및 에너지 변환 저장 연구센터) ;
  • 전태열 (서울대학교 화학생물공학부 및 에너지 변환 저장 연구센터) ;
  • 성영은 (서울대학교 화학생물공학부 및 에너지 변환 저장 연구센터)
  • Published : 2008.08.31

Abstract

Electrocatalytic activities and stabilities of Pt supported on Sb-doped $SnO_2$ (ATO) were examined for ethanol oxidation reactions. Pt colloidal particles were deposited on ATO nanoparticles (Pt/ATO) and the prepared electrocatalysts were characterized by X-ray diffraction, transmission electron microscopy (TEM), and cyclic voltammetry. Electrochemical activity of the Pt/ATO for ethanol electro-oxidation was compared to those of Pt supported on carbon (Pt/C) and commercial PtRu/C. The activitiy of the Pt/ATO was much higher than those of the Pt/C and commercial PtRu/C. The Pt/ATO exhibited much higher electrochemical stabilities than the Pt/C in 0.5M ${H_2}{SO_4}$ and in 0.5M ${H_2}{SO_4}$/1M ${C_2}{H_5}OH$. According to TEM, the growth rate of Pt particles was lower in the Pt/ATO than it was in the Pt/C. The ATO nanoparticle appears to be a promising support material that promotes electrochemical reactions and stabilizes catalyst particles in direct ethanol fuel cell.

안티몬 도핑된 주석 산화물(ATO)에 담지된 백금 촉매(Pt/ATO)의 에탄올 산화반응에 대한 활성과 전기화학적 안정성을 평가하였다. Pt 콜로이드 입자를 ATO 입자에 담지하여 Pt/ATO 촉매를 제조하였으며, 제조된 촉매는 X-ray diffraction, transmission electron microscopy (TEM), 그리고 cyclic voltammetry를 이용하여 평가하였다. Pt/ATO 촉매의 에탄올 산화 활성은 Pt/C, PtRu/C에 비해 크게 우수하였다. Pt/ATO 촉매의 전기화학적 안정성 또한 Pt/C에 비해 우수하였으며, TEM 사진을 통하여 확인한 결과 Pt/ATO의 안정성은 Pt입자의 성장 속도가 Pt/C에 비해 느리기 때문인 것으로 확인되었다. 위의 결과로부터 ATO 나노입자가 직접 에탄올 연료전지용 담지체로서, 활성 및 안정성 향상을 기대할 수 있는 물질임을 확인하였다.

Keywords

References

  1. W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, and Q. Xin, 'Pt based anode catalysts for direct ethanol fuel cells' Appl. Catal. B 46, 273 (2003) https://doi.org/10.1016/S0926-3373(03)00218-2
  2. K.-Y. Chan, J. Ding, J. Ren, S Cheng, and K. Y. Tsang, 'Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells' J. Mater. Chem. 14, 505 (2004) https://doi.org/10.1039/b314224h
  3. K.-W. Park, Y.-E. Sung, S. Han, Y. Yun, and T. Hyeon, 'Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts' J. Phys. Chem. B 108, 939 (2004) https://doi.org/10.1021/jp0368031
  4. I.-S. Park, K.-W. Park, J.-H. Choi, and C. R. Park, 'Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles' Carbon 45, 28 (2007) https://doi.org/10.1016/j.carbon.2006.08.011
  5. A. C. C. Tseung and K. Y. Chen, 'Hydrogen spill-over effect on $Pt/WO_{3}$ anode catalysts' Catal. Today 38, 439 (1997) https://doi.org/10.1016/S0920-5861(97)00053-9
  6. B. L. Garcia, R. Fuentes, and J. W. Weidner, 'Low- Temperature Synthesis of a $PtRu/Nb_{0.1}Ti_{0.9}O_{2}$ Electrocatalyst for Methanol Oxidation' Electrochem. Solid-State Lett. 10, B 108 (2007) https://doi.org/10.1149/1.2732074
  7. B. Moreno, E. Chinarro, J. L. G. Fierro, and J. R. Jurado, 'Synthesis of the ceramic-metal catalysts ($PtRuNi-TiO_{2}$) by the combustion method' J. Power Sources 169, 98 (2007) https://doi.org/10.1016/j.jpowsour.2007.01.051
  8. A. L. Santos, D. Profeti, and P. Olivi, 'Electrooxidation of methanol on Pt microparticles dispersed on $SnO_{2}$ thin films' Electrochim. Acta 50, 2615 (2005) https://doi.org/10.1016/j.electacta.2004.11.006
  9. T. Okanishi, T. Matsui, T. Takeguchi, R. Kikuchi, and K. Eguchi, 'Chemical interaction between Pt and $SnO_{2}$ and influence on adsorptive properties of carbon monoxide' Appl. Catal. A 298, 181 (2006) https://doi.org/10.1016/j.apcata.2005.09.035
  10. L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Guo, B. Zhou, and Q. Xin, 'Size-controllable synthesis of monodispersed $SnO_{2}$ nanoparticles and application in electrocatalysts' J. Phys. Chem. B 109, 8774 (2005) https://doi.org/10.1021/jp050334g
  11. T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, and K. Yasuda, 'Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells' Electrochem. Comm. 7, 183 (2005) https://doi.org/10.1016/j.elecom.2004.12.007
  12. H. Chhina, S. Campbell, and O. Kesler, 'An oxidationresistant indium tin oxide catalyst support for proton exchange membrane fuel cells' J. Power Sources 161, 893 (2006) https://doi.org/10.1016/j.jpowsour.2006.05.014
  13. C. Bock, C. Paquet, M. Couillard, G. A. Botton, and B. R. MacDougall, 'Size-Selected Synthesis of PtRu Nano-Catalysts: Reaction and Size Control Mechanism' J. Am. Chem. Soc. 126, 8028 (2004) https://doi.org/10.1021/ja0495819
  14. H.-J. Ahn, H.-C. Choi, K.-W. Park, S.-B. Kim, and Y.-E. Sung, 'Investigation of the structural and electrochemical properties of size-controlled $SnO_{2}$ nanoparticles' J. Phys. Chem. B 108, 9815 (2004) https://doi.org/10.1021/jp035769n
  15. M. Arenz, V. Stamenkovic, B. B. Blizanac, K. J. Mayrhofer, N. M. Markovic, and P. N. Ross, 'Carbonsupported Pt-Sn electrocatalysts for the anodic oxidation of $H_{2}$, CO, and $H_{2}$/CO mixtures. Part II: The structureactivity relationship' J. Catal. 232, 402 (2005) https://doi.org/10.1016/j.jcat.2005.03.022
  16. W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides, and P. Tsiakaras, 'Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance' J. Power Sources 140, 50 (2005) https://doi.org/10.1016/j.jpowsour.2004.08.003
  17. K.-I. Ota, S. Nishigori, and N. Kamiya, 'Dissolution of platinum anodes in sulfuric acid solution' J. Electroanal. Chem. 257, 205 (1988) https://doi.org/10.1016/0022-0728(88)87042-6
  18. B. Merzougui and S. Swathirajan, 'Rotating disk electrode investigation of fuel cell catalyst degration due to potential cycling in acid electrode' J. Electrochem. Soc. 153, A 2220 (2006) https://doi.org/10.1149/1.2353752
  19. M. W. Breiter, 'Voltammetric study of the anodic activation of platinum' Electrochim. Acta 11, 905 (1966) https://doi.org/10.1016/0013-4686(66)87067-6
  20. Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, and S. Matsumoto, 'Sintering inhibition mechanism of platinum supported on ceriabased oxide and Pt-oxide-support interaction' J. Catal. 242, 103 (2006) https://doi.org/10.1016/j.jcat.2006.06.002
  21. C.-C. Shih and J.-R Chang, 'Pt/C stabilization for catalytic wet-air oxidation: Use of grafted $PiO_{2}$' J. Catal. 240, 137 (2006) https://doi.org/10.1016/j.jcat.2006.03.019

Cited by

  1. Fuel Cell Catalyst Optimization by Six Sigma vol.11, pp.8, 2011, https://doi.org/10.5392/JKCA.2011.11.8.468