DOI QR코드

DOI QR Code

Investigation of Simple Electrochemical Conditions for Generation of Ozonized Water

  • Published : 2008.08.31

Abstract

An electrochemical generation of ozonized water was investigated by using ${\beta}-PbO_2$ as an anode and tap water as an anolyte. According to the potentiometric ozone detection which utilizes potential differences arisen from a chemical reaction of ozone and iodide, increasing tendency of ozone concentration on electrolysis time could be observed to show the maximum value of 8 ppm at an electrolysis time of 10 min. Ozone could be generated promptly even at an electrolysis time of 10 sec., suggesting great advantages of this electrochemical process in terms of simplicity and readiness that might be applied directly to practical uses including medical and/ or food industries. Influences of electrolysis on the properties and surface conditions of a $PbO_2$ electrode were also discussed from the results of cyclic voltammetry, scanning electron microscope, and X-ray diffractometer.

Keywords

References

  1. P. C. Foller and G. H. Kelsall, 'Ozone generation via the electrolysis of fluoboric acid using glassy carbon anodes and air depolarized cathodes' J. Appl. Electrochem., 23, 996 (1993) https://doi.org/10.1007/BF00266121
  2. S. Stucki, G. Theis, R. Kotz, H. Devantay, and H. J. Christen, 'In situ production of ozone in water using a membrel electrolyzer' J. Electrochem. Soc., Feb. 367 (1985)
  3. E. R. Kotz and S. Stucki, 'Ozone and Oxygen evolution on $PbO_{2}$ electrodes in acid solution' J. Electroanal Chem., 228, 407 (1987) https://doi.org/10.1016/0022-0728(87)80120-1
  4. M. I. Awad, S. Sata, K. Kaneda, M. Ikematsu, T. Okajima, and T. Ohsaka, 'Ozone electrogeneration at a high current efficiency using a tantalum oxide-platinum composite electrode' Electrochem. Comm., 8, 1263 (2006) https://doi.org/10.1016/j.elecom.2006.06.008
  5. M. H. P. Santana, L. A. De Faria, and J. F. C. Boodts, 'Investigation of the properties of Ti/[$IrO_{2}-Nb_{2}O_{5}$] electrodes for simultaneous oxygen evolution and electrochemical ozone production, EOP' Electrochim. Acta., 49, 1925 (2004) https://doi.org/10.1016/j.electacta.2003.12.021
  6. N. Katsuki, E. Takahashi, M. Toyoda, T. Kurosu, M. Iida, S. Wakita, Y. Nishiki, and T. Shimamune, 'Water electrolysis using diamond thin-film electrodes' J. Electrochem. Soc., 145, 2358 (1998) https://doi.org/10.1149/1.1838643
  7. S. G. Park, G. S. Kim, J. E. Park, Y. Einaga, and A. Fujishima, 'Use of Boron-Doped Diamond Electrode in Ozone Generation' J. New. Mat. Electrochem. Systems, 8, 65 (2005)
  8. K. Kaneda, M. Ikematsu, Y. Koizumi, H. Minoshima, T. Rakuma, D. Takaoka, and M. Yasuda, 'Ozone generation by a $TaO_{x}$ and Pt Composite Insulator-coated Ti electrode' Electrochem. Solid State Lett., 8, J13 (2005)
  9. M. O. Buffle, J. Schumacher, E. Salhi, M. Jekel, and U. Gunten, 'Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system' Water Research 40, 1884 (2006) https://doi.org/10.1016/j.watres.2006.02.026
  10. L. M. Da Silva, L. A. De Faria, and J. F. C. Boodts, 'Green process for environmental application. Electrochemical ozone production' Pure Appl. Chem., 73, 1871 (2001) https://doi.org/10.1351/pac200173121871
  11. M. I. Awad and Takeo Ohsaka, 'Potentiometric analysis of peroxyacetic acid in the presence of a large excess of hydrogen peroxide' J. Electroanal. Chem. 544, 35 (2003) https://doi.org/10.1016/S0022-0728(03)00057-3
  12. W. D. Komhyr, 'Method of sensing the ozone in upper atmosphere' US Patent 3428542 (1969)
  13. D. Devilliers, M. T. Dinh Thi, E. Mache, V. Dauriac, and N. Lequeux, 'Electroanalytical investigations on electrodeposited lead dioxide' J. Electroanal. Chem. 573, 227 (2004) https://doi.org/10.1016/j.jelechem.2004.07.008