DOI QR코드

DOI QR Code

정전분무법을 이용한 직접개미산 연료전지 전극촉매의 효율적인 분산

Effective Dispersion of Electrode Catalysts for Direct Formic Acid Fuel Cells by Electrospray Method

  • 권병완 (경희대학교 환경응용화학대학) ;
  • 김진수 (경희대학교 환경응용화학대학) ;
  • 권용재 (인하공업전문대학교 화공환경과) ;
  • 한종희 (한국과학기술연구원 연료전지센터)
  • Kwon, Byeong-Wan (College of Environment & Applied Chemistry, Kyung Hee University) ;
  • Kim, Jin-Soo (College of Environment & Applied Chemistry, Kyung Hee University) ;
  • Kwon, Yong-Chai (Department of Chemical and Environmental Technology, Inha Technical College) ;
  • Han, Jong-Hee (Fuel Cell Research Center, Korea Institute of Science and Technology)
  • 발행 : 2008.11.30

초록

직접개미산 연료전지의 전극 촉매로 사용되는 귀금속 백금-루테늄 촉매를 정전분무법을 이용하여 효율적으로 분산하여 보았다. 전극에 도포된 촉매 양은 분사 시간에 따라 증가하였으나, 분사시간이 80분을 넘는 경우 촉매 응집으로 인하여 연료전지 성능은 감소하는 경향을 보였다. 상용 핸드스프레이로 전극 촉매를 $3.0\;mg/cm^2$ 분산한 경우 얻은 최대 출력밀도 $74\;mW/cm^2$와 비교하여 정전분무법은 적은 양인 $1.85\;mg/cm^2$의 촉매를 분산하고도 $72\;mW/cm^2$의 최대 출력밀도를 얻을 수 있었다.

Effective dispersion of noble metal Pt-Ru catalysts was conducted for the application of direct formic acid fuel cell(DFAFC) electrodes by electrospray method. The amount of catalysts deposited on the electrodes increased with increasing deposition time. However, the performance of cell test decreased with the deposition time after 80 min. because of agglomeration of catalysts. With the conventional hand-spray method, the density of the anode catalysts deposited was $3.0\;mg/cm^2$ and the maximum power density of the MEA was $74\;mW/cm^2$. On the other hand, the MEA prepared by the electrospray method, showed a similar power density of $72\;mW/cm^2$. However, the density of the anode catalysts deposited was much lower than the case of the hand-spray and the density the anode catalysts in this case was $1.85\;mg/cm^2$.

키워드

참고문헌

  1. M. Baldauf and W. Preidel, 'Status of the Development of a Direct Methanol Fuel Cell' J. Power Sources, 84, 161 (1999) https://doi.org/10.1016/S0378-7753(99)00332-8
  2. H. Dohle, J. Divisei, and R. Jung, 'Process Engineering of the Direct Methanol Fuel Cell' J. Power Sources, 86, 469 (2000) https://doi.org/10.1016/S0378-7753(99)00456-5
  3. W. C. Choi, J. D. Kim, and S. I. Woo, 'Modification of Proton Conducting Membrane for rEducing Methanol Crossover in a Direct-methanol Fuel Cell' J. Power Sources, 96, 411 (2001) https://doi.org/10.1016/S0378-7753(00)00602-9
  4. M. S. Hyun, S.-K. Kim, S. Lim, B. Lee, D. Peck, and D. Jung, 'Investigation of Factors Influencing Methanol Crossover in Direct Methanol Fuel Cell' J. Korean Electrochem. Soc., 11, 6 (2008) https://doi.org/10.5229/JKES.2008.11.1.006
  5. S. Ha, C.A. Rice, R.I. Masel, and A. Wieckowski, 'Methanol Conditioning for Improved Performance of Formic Acid Fuel Cells' J. Power Sources, 112, 655 (2002) https://doi.org/10.1016/S0378-7753(02)00453-6
  6. S. Ha, B. Adams, and R.I. Masel, 'A Miniature Air Breathing Direct Formic Fuel Cell' J. Power Sources, 128, 119 (2004) https://doi.org/10.1016/j.jpowsour.2003.09.071
  7. Y. Zhu, S.Y. Ha, and R.I. Masel, 'High Power Density Direct Formic Acid Fuel Cells' J. Power Sources, 130, 8 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.051
  8. Y. Zhu, Z. Khan, and R.I. Masel, 'The Behavior of Palladium Catalysts in Direct Formic Acid Fuel Cells' J. Power Sources, 139, 15 (2005) https://doi.org/10.1016/j.jpowsour.2004.06.054
  9. R. Benitez, J. Soler, and L. Daza, 'Novel Method for Preparation of PEMFC Electrodes by the Electrospray Technique' J. Power Sources, 151, 108 (2005) https://doi.org/10.1016/j.jpowsour.2005.02.047