DOI QR코드

DOI QR Code

Electrochemical, Antifungal, Antibacterial and DNA Cleavage Studies of Some Co(II), Ni(II), Cu(II) and Zn(II)-Copolymer Complexes

  • Published : 2008.12.31

Abstract

Cyclic voltammetric measurements were performed for Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-succinic anhydride) (L) and Ni(II) and Cu(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-methacrylic acid) ($L^1$). The in vitro biological screening effects of the investigated compounds were tested against the fungal species including Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans and bacterial species including Staphylococcus aureus, Escherichia coli, Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa by well diffusion method. A comparative study of inhibition values of the copolymers and their complexes indicates that the complexes exhibit higher antimicrobial activity. Copper ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium. The nuclease activity of the above metal complexes were assessed by gel electrophoresis assay and the results show that the copper complexes can cleave pUC18 DNA effectively in presence of hydrogen peroxide compared to other metal complexes. The degradation experiments using Rhodamine B dye indicate that the hydroxyl radical species are involved in the DNA cleavage reactions.

Keywords

References

  1. Akmal, S. G., Mohsen, S. A. Barakat, A. S. and Teleb, S. M. 2007. Synthesis, characterization and biological activity of some Pt(II) complexes with Schiff bases derived from salicyaldehyde, 2-furfuraldehyde and phenylenediamine. Spectrochim. Acta. A. 67:114-121 https://doi.org/10.1016/j.saa.2006.06.031
  2. Anjaneyula, Y. and Rao, R. P. 1986. Preparation, characterization and antimicrobial activity studies of some ternary complexes of Cu(II) with acetylacetone and various salicyclic acids. Synth. React. Inorg. Met.-Org. Chem. 16:257-272 https://doi.org/10.1080/00945718608057530
  3. Babu, M. S. S., Reddy, K. H. and Pitchika, G. K. 2007. Synthesis, characterization, DNA interaction and cleavage activity of new mixed ligand Cu(II) complexes with heterocyclic bases. Polyhedron 26:572-580 https://doi.org/10.1016/j.poly.2006.08.026
  4. Bidyut, K. S., Pattubla, A. N. R., Girish, N., Subramony, M., Munirathinam, N. and Akhil, R. C. 2002. Oxidative cleavage of DNA by a dipyridoquinoxaline Cu(II) complex in the presence of ascorbic acid. J. Inorg. Biochem. 89:191-196 https://doi.org/10.1016/S0162-0134(01)00418-4
  5. Da Silveira, V. C., Luz, J. S., Oliveira, C. C., Graziani, L., Ciriolo, M. R. and Ferreira, D.CA.M. 2008. Double-strand DNA cleavage induced by oxindole-Schiff base Cu(II) complexes with potential antitumor activity. J. Inorg. Biochem. 102:1090-1095 https://doi.org/10.1016/j.jinorgbio.2007.12.033
  6. Drago, R. S., Gaul, J., Back, J. A. and Stamb, D. K. 1980. Preparation and catalytic oxidizing potential of polymer supported chelating amine and Schiff base complexes. J. Am. Chem. Soc. 102:1033 https://doi.org/10.1021/ja00523a021
  7. Liu, C., Wang, M., Zhang, T. and Sun, H. 2004. DNA hydrolysis promoted by di- and multi-nuclear metal complexes. Coord. Chem. Rev. 248:147-168 https://doi.org/10.1016/j.cct.2003.11.002
  8. Liua, J., Zhang, T., Lua, T., Quc, L., Zhouc, H., Zhang, Q. and Jia, L. 2002. DNA-binding and cleavage studies of macrocyclic Cu(II) complexes. J. Inorg. Biochem. 91:269 https://doi.org/10.1016/S0162-0134(02)00441-5
  9. Macias, B., Mary V. Villa, G mez, B., Borrás, J., Alzuet, G., Lvarez, M. G. and Castiñeiras, A. 2007. DNA interaction of new Cu(II) complexes with sulfonamides as ligands. J. Inorg. Biochem. 101:444 https://doi.org/10.1016/j.jinorgbio.2006.11.007
  10. Prabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H and Natarajan, K. 2004. Synthesis, characterisation, EXAFS investigation and antibacterial activities of new Ru(III) complexes containing tetradentate Schiff base. J. Inorg. Biochem. 98:2131-2140 https://doi.org/10.1016/j.jinorgbio.2004.09.020
  11. Pretviel, G., Bernadou, J. and Meunier, B. 1995. Carbon-hydrogen bonds of DNA sugar units as targets for chemical nucleases and drugs. Angew. Chem., Int. Ed. Engl. 34:746-769 https://doi.org/10.1002/anie.199507461
  12. Raso, A. G., Fiol, J. J., Adrover, B., Moreno, V., Mata, I., Espinosa, E. and Molins, E. 2003. Synthesis, structure and nuclease properties of several ternary Cu(II) peptide complexes with 1,10-phenanthroline. J. Inorg. Biochem. 95:77-86 https://doi.org/10.1016/S0162-0134(03)00121-1
  13. Srivatsan, S. G., Parvez, M. and Verma, S. 2003. Adenine-copper coordination polymer as an oxidative nucleozyme: implications for simple prebiotic catalytic units J. Inorg. Biochem. 97:340 https://doi.org/10.1016/S0162-0134(03)00285-X

Cited by

  1. Synthesis, Spectral Characterization, Antitumor, Antioxidant, and Antimicrobial Studies of New Potential ONS Schiff Base Complexes vol.64, pp.11, 2017, https://doi.org/10.1002/jccs.201700072