DOI QR코드

DOI QR Code

Crystal Structure and Morphology of Nitride Precipitates in TiAl

TiAl에 석출한 질화물의 결정구조와 형태

  • Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University) ;
  • Koo, Kyung-Wan (Dept. of Defense Science & Technology, Hoseo University)
  • 한창석 (호서대학교 국방과학기술학과) ;
  • 구경완 (호서대학교 국방과학기술학과)
  • Published : 2008.01.31

Abstract

The crystal structures and morphologies of precipitates in $L1_0$-ordered TiAl intermetallics containing nitrogen were investigated by transmission electron microscopy (TEM). Under aging at an approximate temperature of 1073 K after quenching from 1423 K, TiAl hardens appreciably due to the nitride precipitation. TEM observations revealed that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the $L1_0$-TiAl matrix, appear in the matrix preferentially at the dislocations. Selected area electron diffraction (SAED) pattern analyses showed that the needle-shaped precipitate is perovskite-type $Ti_3AlN$ (P-phase). The orientation relationship between the P-phase and the $L1_0$-TiAl matrix was found to be $(001)_P//(001)_{TiAl}\;and\;[010]_P//[010]_{TiAl}$. By aging at higher temperatures or for longer periods at 1073 K, plate-like precipitates of $Ti_2AlN$ (H-phase) with a hexagonal structure formed on the {111} planes of the $L1_0$-TiAl matrix. The orientation relationship between the $Ti_2AlN$ and the $L1_0$-TiAl matrix is $(0001)_H//(111)_{TiAl}\;and\;_H//_{TiAl}$.

Keywords

References

  1. S. H. Song, S. H. Kim, Y. H. Hong, M. H. Oh and D. M. Wee, Met. Mater. Int., 10, 307 (2004) https://doi.org/10.1007/BF03185978
  2. R. J. Van Thyne and H. D. Kessier, Trans. AIME, 196, 213 (1954)
  3. J. C. Schuster, H. Nowotny and C. Vaccaro, J. Solid State Chem., 32, 213 (1980) https://doi.org/10.1016/0022-4596(80)90569-1
  4. J. C. Schuster and J. Bauer, J. Solid State Chem., 53, 260 (1984) https://doi.org/10.1016/0022-4596(84)90100-2
  5. F. H. Hayes, Ternary Alloys, Ed. G. Petzow and G.Effenberg, VCH, Weinheim, 7, 557 (1992)
  6. A. Zakharov, Ternary Alloys, Ed. G. Petzow and G.Effenberg, VCH, Weinheim, 7, 305 (1992)
  7. H. Mabuchi, H. Morimoto, A. Kakitsuji, H. Tsuda, T. Matsui, and K. Morii, Scripta materialia, 44, 2503 (2001) https://doi.org/10.1016/S1359-6462(01)00657-1
  8. M. J. Kaufman, D. G. Konitzer, R. D. Shull and H. L. Fraser, Scr. Metall. Mater., 20, 103 (1986) https://doi.org/10.1016/0036-9748(86)90221-8
  9. A. Loiseau and A. Lasalmonie, Mat. Sci. Eng., 67, 163 (1984) https://doi.org/10.1016/0025-5416(84)90047-8
  10. A. Loiseau and A. Lasalmonie, Acta Cryst., B39, 580 (1983) https://doi.org/10.1107/S0108768183003018
  11. T. Kawabata, M. Tadano and O. Izumi, ISIJ International, 31, 1161 (1991) https://doi.org/10.2355/isijinternational.31.1161
  12. D. Vujic, Z. Li and S. H. Whang, Met. Trans., 19A, 2445(1988) https://doi.org/10.1007/BF02645472
  13. A. Kelly and R. B. Nicholson, Progress in Materials Science, Ed. B. Chamers, 10, 149 (1963)
  14. E. von Hornbogen and M. Roth, Z. Metalkde., 58, 842 (1967)
  15. W. T. Loomis, J. W. Freeman and D. L. Sponseller, Met.Trans., 3, 989 (1972) https://doi.org/10.1007/BF02647677

Cited by

  1. Effect of Aluminium Content on High Temperature Deformation Behavior of TiAl Intermetallic Compound vol.25, pp.8, 2015, https://doi.org/10.3740/MRSK.2015.25.8.398