DOI QR코드

DOI QR Code

Low-Temperature Small Polaron Hopping Conduction in Bilayer La1.4(Sr0.2Ca1.4)Mn2O7 Ceramics

이중 층 La1.4(Sr0.2Ca1.4)Mn2O7 세라믹스의 저온에서의 Small Polaron Hopping 전도

  • Published : 2008.01.31

Abstract

The dc resistivity and thermoelectric power of bilayered perovskite $La_{1.4}(Sr_{0.2}Ca_{1.4})Mn_2O_7$ were measured as a function of the temperature. In the ferromagnetic phase, ${\rho}(T)$ was accurately predicted by $a_0+a_2T^2+a_{4.5}T^{4.5}$ with and without an applied field. At high temperatures, a significant difference between the activation energy deduced from the electrical resistivity and thermoelectric power, a characteristic of small polarons, was observed. All of the experimental data can be feasibly explained on the basis of the small polaron.

Keywords

References

  1. S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science, 264, 413 (1994) https://doi.org/10.1126/science.264.5157.413
  2. M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Phys. Rev. B, 54, 11914(1996) https://doi.org/10.1103/PhysRevB.54.11914
  3. G. J. Synder, R. Hikes, S. DiCarolis, M. R. Beasley and T. H. Geballe, Phys. Rev. B, 53, 14434 (1996) https://doi.org/10.1103/PhysRevB.53.14434
  4. G. B.Chon, H. S. Im, C. G. Lee, B. H. Koo, S. M. Lee, M. H. Jung and Y. H. Jo, Kor. J. Mater. Res., 17, 203 (2007) https://doi.org/10.3740/MRSK.2007.17.4.203
  5. G. B.Chon, B. H. Koo and C. G. Lee, Kor. J. Mater. Res.,16, 44 (2006) https://doi.org/10.3740/MRSK.2006.16.1.044
  6. C. Zener, Phys. Rev., 82, 403 (1951) https://doi.org/10.1103/PhysRev.82.403
  7. A. J. Millis, Phys. Rev. B, 53, 8434 (1996) https://doi.org/10.1103/PhysRevB.53.8434
  8. A. J. Millis. Phys. Rev. B, 55, 6405 (1997) https://doi.org/10.1103/PhysRevB.55.6405
  9. T. Y. Tyson, J. Mustre de Leon, S. D. Conradson, A. R. Bishop, J. J. Neumeier, H. Roder and J. Zang, Phys. Rev.B, 53, 13958 (1996) https://doi.org/10.1103/PhysRevB.53.13985
  10. M. Jaime, H. T. Hardner, M. B. Salamon, M. Rubinstein, P. Dorsey and D. Emin, Phys. Rev Lett., 78, 951 (1997) https://doi.org/10.1103/PhysRevLett.78.951
  11. M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz and D. B. Chrisey, Phys. Rev. B, 54, 11914 (1996) https://doi.org/10.1103/PhysRevB.54.11914
  12. C. D. Potter, M. Swiat, S. D. Bader, D. N. Argyriou, J. F.Mitchell, D. J. Miller, D. G. Hinks and J. D. Jorgensen, Phys. Rev. B, 57, 72 (1998) https://doi.org/10.1103/PhysRevB.57.72
  13. Y. Sun, X. Xu and Y. Zhang, J. Phys. Condensed. Matter.,11, 10475 (2000) https://doi.org/10.1088/0953-8984/12/50/309
  14. Y. Moritomo, A. Asasitsu, H. Kuwahara and Y. Tokura, Nature, 380, 142 (1996) https://doi.org/10.1038/380141a0
  15. T. Kimura, Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Tamura and Y. Tokura, Science, 274, 1698 (1996) https://doi.org/10.1126/science.274.5293.1698
  16. H. Asano, J. Hayakawa, and M. Matsui, Appl. Phys. lett,71, 844 (1997) https://doi.org/10.1063/1.119664
  17. D. A. Argyriou, J. F. Mitchell, C. D. Potter, S. D. Bader, R. Kleb and J. D. Jorgensen, Phys. Rev. B, 55, R11965 (1997) https://doi.org/10.1103/PhysRevB.55.R11965
  18. H. Asano, J. Hayakawa and M. Matsui, Phys. Rev. B, 56, 5395 (1997) https://doi.org/10.1103/PhysRevB.56.5395
  19. A. K. Gupta, V. Kumar, G. L. Bhalla and N. Khare, J. Alloy and Comp., 438, 56 (2007) https://doi.org/10.1016/j.jallcom.2006.08.034
  20. R. Mahesh, R. Wang and M. Itoh, Phys. Rev. B, 57, 104 (1998) https://doi.org/10.1103/PhysRevB.57.104
  21. J. S. Zhou, J. B. Goodenough and J. F. Mitchell, Phys. Rev.B, 58, R579 (1998) https://doi.org/10.1103/PhysRevB.58.R579
  22. V. H. Crespi, L. Lu, Y. X. Jia, K. Khazeni, A. Zettle and M. L. Cohen, Phys. Rev. B, 53, 14303 (1996) https://doi.org/10.1103/PhysRevB.53.14303
  23. N. F, Mott and I. G. Austin, Adv. Phys., 18, 41 (1969) https://doi.org/10.1080/00018736900101267
  24. J. M. D. Coey, M. Viret and S.Von Molnar, Adv. Phys., 48, 167 (1999) https://doi.org/10.1080/000187399243455
  25. Y. S. Reddy, V. Prashanth, E. Nagabhushanam, P. Kistaiah and C. V. Reddy, J. Alloy and Comp., 440, 6 (2007) https://doi.org/10.1016/j.jallcom.2006.08.325
  26. J. Blasco, M. Castro and J. Garcia, J. Phys. Condens.Matter., 6, 5875 (1994) https://doi.org/10.1088/0953-8984/6/30/009
  27. J. Blasco and J. Garcia, J. Phys. Condens. Matter., 6, 10759 (1994) https://doi.org/10.1088/0953-8984/6/49/017
  28. S. Wang, K. Li, Z. Chen and Y. Zhang, Phys. Rev. B, 61, 575 (2000) https://doi.org/10.1103/PhysRevB.61.575
  29. S. Bhattacharya, A. Banerjee, S. Pal, R. K. Mukherjee and B. K. Chaudhhuri, J. Appl. Phys., 93, 356 (2003) https://doi.org/10.1063/1.1527220
  30. P. Mandal, Phys. Rev. B, 61, 14675 (2000) https://doi.org/10.1103/PhysRevB.61.14675
  31. S. M. Jaime, P. Lin, M. B. Salamon and P. D. Han, Phys.Rev. B, 58, 1R5901 (1998) https://doi.org/10.1103/PhysRevB.58.R5901
  32. F. J. Blatt, D. J. Flood, W. Rowe and P. A. Schroeder, Phys. Rev. Lett., 18, 395 (1967) https://doi.org/10.1103/PhysRevLett.18.395