References
- Anderson, G.L., Boyd, W.A. and Williams, P.L. (2001). Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 20, 833-838 https://doi.org/10.1897/1551-5028(2001)020<0833:AOSEFT>2.0.CO;2
- Anderson, G.L., Cole, R.D. and Williams, P.L. (2004). Assessing behavioral toxicity with Caenorhabditis elegans. Environ. Toxicol. Chem., 23, 1235-1240 https://doi.org/10.1897/03-264
- Antoshechkin, I. and Sternberg, P.W. (2007). The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat. Rev. Genet., 8, 518-532 https://doi.org/10.1038/nrg2105
- Ayyadevara, S., Alla, R., Thaden, J.J. and Shmookler Reis, R.J. (2008). Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell, 7, 13-22 https://doi.org/10.1111/j.1474-9726.2007.00348.x
- Ayyadevara, S., Dandapat, A., Singh, S.P., Benes, H., Zimniak, L., Reis, R.J. and Zimniak, P. (2005). Lifespan extension in hypomorphic daf-2 mutants of Caenorhabditis elegans is partially mediated by glutathione transferase CeGSTP2- 2. Aging Cell., 4, 299-307 https://doi.org/10.1111/j.1474-9726.2005.00172.x
- Barsyte, D., Lovejoy, D.A. and Lithgow, G.J. (2001). Longevity and heavy metal resistance in daf-2 and age-1 longlived mutants of Caenorhabditis elegans. FASEB J., 15, 627-634 https://doi.org/10.1096/fj.99-0966com
- Bettinger, J.C., Carnell, L., Davies, A.G. and McIntire, S.L. (2004). The use of Caenorhabditis elegans in molecular neuropharmacology. Int. Rev. Neurobiol., 62, 195-212 https://doi.org/10.1016/S0074-7742(04)62007-1
- Bongers, T. and Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol., 14, 224-228 https://doi.org/10.1016/S0169-5347(98)01583-3
- Boyd, W.A. and Williams, P.L. (2003). Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity tests. Environ. Toxicol. Chem., 22, 2768-2774 https://doi.org/10.1897/02-573
- Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics., 77, 91-94
- Caquet, T., Lagadic, L. and Sheffield, S.R. (2000). Mesocosms in ecotoxicology (1): Outdoor aquatic systems. Rev. Environ. Contam. Toxicol., 165, 1-38
- Choi, J., Caquet, T. and Roche, H. (2002). Multilevel effects of sublethal fenitrothion exposure in Chironomus riparius Mg. (Diptera, Chironomidae) larvae. Environ. Toxicol. Chem., 21, 2725-2730 https://doi.org/10.1897/1551-5028(2002)021<2725:MEOSFE>2.0.CO;2
- Chu, K.W., Chan, S.K. and Chow, K.L. (2005). Improvement of heavy metal stress and toxicity assays by coupling a transgenic reporter in a mutant nematode strain. Aquat. Toxicol., 74, 320-332 https://doi.org/10.1016/j.aquatox.2005.06.006
- Cole, R.D., Anderson, G.L. and Williams, P.L. (2004). The nematode Caenorhabditis elegans as a model of organophosphate- induced mammalian neurotoxicity. Toxicol. Appl. Pharmacol., 194, 248-256 https://doi.org/10.1016/j.taap.2003.09.013
- Committee on Developmental Toxicology., Board on Environmental Studies and Toxicology., National Research Council. (2000). Scientific Frontiers in Developmental Toxicology and Risk Assessment. National Research Council, pp. 1- 354
- Custodia, N., Won, S.J., Novillo, A., Wieland, M., Li, C. and Callard, I.P. (2001). Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann. N.Y. Acad. Sci., 948, 32-42
- Cui, Y., McBride, S.J., Boyd, W.A., Alper, S. and Freedman, J.H. (2007). Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol., 8, R122 https://doi.org/10.1186/gb-2007-8-6-r122
- Daitoku, H. and Fukamizu, A. (2007). FOXO transcription factors in the regulatory networks of longevity. J. Biochem., 141, 769-774 https://doi.org/10.1093/jb/mvm104
- Dengg, M. and van Meel, J.C. (2004). Caenorhabditis elegans as model system for rapid toxicity assessment of pharmaceutical compounds. J. Pharmacol. Toxicol. Methods, 50, 9-14
- Depledge, M.H. (1994). Genotypic toxicity: implications for individuals and populations. Environ. Health Perspect., 12, 101-104
- Dhawan, R., Dusenbery, D.B. and Williams, P.L. (1999). Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J. Toxicol. Environ. Health A., 58, 451-462 https://doi.org/10.1080/009841099157179
- Dhawan, R., Dusenbery, D.B. and Williams, P.L. (2000). A comparison of metal-induced lethality and behavioral responses in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 19, 3061-3067 https://doi.org/10.1897/1551-5028(2000)019<3061:ACOMIL>2.0.CO;2
- Dong, J., Boyd, W.A. and Freedman, J.H. (2008). Molecular characterization of two homologs of the Caenorhabditis elegans cadmium-responsive gene cdr-1: cdr-4 and cdr-6. J. Mol. Biol., 376, 621-633 https://doi.org/10.1016/j.jmb.2007.11.094
- Dong, J., Song, M.O. and Freedman, J.H. (2005). Identification and characterization of a family of Caenorhabditis elegans genes that is homologous to the cadmiumresponsive gene cdr-1. Biochim. Biophys. Acta., 1727, 16- 26 https://doi.org/10.1016/j.bbaexp.2004.11.007
- Forbes, V.E., Palmqvist, A. and Bach, L. (2006). The use and misuse of biomarkers in ecotoxicology. Environ. Toxicol. Chem., 25, 272-280 https://doi.org/10.1897/05-257R.1
- Fossi, M.C., Casini, S., Savelli, C., Corbelli, C., Franchi, E., Mattei, N., Sanchez-Hernandez, J.C., Corsi, Bamber, I., Depledge, S. and Depledge, M.H. (2000). Biomarker responses at different levels of biological organisation in crabs (Carcinus aestuarii) experimentally exposed to benzo(alpha)pyrene. Chemosphere, 40, 861-874 https://doi.org/10.1016/S0045-6535(99)00300-8
- Gami, M.S., Iser, W.B., Hanselman, K.B. and Wolkow, C.A. (2006). Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling. B.M.C. Dev. Biol., 6, 45 https://doi.org/10.1186/1471-213X-6-45
- Grad, L.I. and Lemire, B.D. (2004). Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum. Mol. Genet., 13, 303-314 https://doi.org/10.1093/hmg/ddh231
- Harada, H., Kurauchi, M., Hayashi, R. and Eki, T. (2007). Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents. Ecotoxicol. Environ. Saf., 66, 378-383 https://doi.org/10.1016/j.ecoenv.2006.02.017
- Heckmann, L.H., Sibly, R.M., Connon, R., Hooper, H.L., Hutchinson, T.H., Maund, S.J., Hill, C.J., Bouetard, A. and Callaghan, A. (2008). Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biology, 9, R40 https://doi.org/10.1186/gb-2008-9-2-r40
- Hollis, R.P., Killham, K. and Glover, L.A. (2000). Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl. Environ. Microbiol., 66, 1676- 1679 https://doi.org/10.1128/AEM.66.4.1676-1679.2000
- Hughes, S. and Stürzenbaum, S.R. (2007). Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits. Environ. Pollut., 145, 395-400 https://doi.org/10.1016/j.envpol.2006.06.003
- Ibiam, U. and Grant, A. (2005). RNA/DNA ratios as a sublethal endpoint for large-scale toxicity tests with the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 24, 1155-1159 https://doi.org/10.1897/04-262R.1
- Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K. and Matsumoto, K. (2005). The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev., 19, 2278-2283 https://doi.org/10.1101/gad.1324805
- Jones, D., Stringham, E.G., Babich, S.L. and Candido, E.P. (1996). Transgenic strains of the nematode C. elegans in biomonitoring and toxicology: Effects of captan and related compounds on the stress response. Toxicology, 109, 119- 127 https://doi.org/10.1016/0300-483X(96)03316-1
- Kaletta, T. and Hengartner, M.O. (2006). Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug. Discov., 5, 387-398 https://doi.org/10.1038/nrd2031
- Kendall, G., Cooper, H.J., Heptinstall, J., Derrick, P.J., Walton, D.J. and Peterson, I.R. (2001). Specific electrochemical nitration of horse heart myoglobin. Arch. Biochem. Biophys., 392, 169-179 https://doi.org/10.1006/abbi.2001.2451
- Khanna, N., Cressman, C.P. 3rd., Tatara, C.P. and Williams, P.L. (1997). Tolerance of the nematode Caenorhabditis elegans to pH, salinity, and hardness in aquatic media. Arch. Environ. Contam. Toxicol., 32, 110-114 https://doi.org/10.1007/s002449900162
- Kim, J., Takahashi, M., Shimizu, T., Shirasawa, T., Kajita, M., Kanayama, A. and Miyamoto, Y. (2008). Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech. Ageing. Dev., 129, 322-331 https://doi.org/10.1016/j.mad.2008.02.011
- Kipreos, E.T. (2005). Ubiquitin-mediated pathways in C. elegans. WormBook, 1, 1-24
- Kurauchi, K., Nakaguchi, Y., Tsutsumi, M., Hori, H., Kurihara, R., Hashimoto, S., Ohnuma, R., Yamamoto, Y., Matsuoka, S., Kawai, S., Hirata, T. and Kinoshita, M. (2005). In vivo visual reporter system for detection of estrogen-like substances by transgenic medaka. Environ. Sci. Technol., 39, 2762-2768 https://doi.org/10.1021/es0486465
- Kwon, J.Y., Hong, M., Choi, M.S., Kang, S., Duke, K., Kim, S., Lee, S. and Lee, J. (2004). Ethanol-response genes and their regulation analyzed by a microarray and comparative genomic approach in the nematode Caenorhabditis elegans. Genomics, 83, 600-614 https://doi.org/10.1016/j.ygeno.2003.10.008
- Lagadic, L., Caquet, T. and Ramade, F. (1994). The role of biomarkers in environmental assessment (5). Invertebrate populations and communities. Ecotoxicology, 3, 193-208 https://doi.org/10.1007/BF00117084
- Lagido, C., Pettitt, J., Porter, A.J., Paton, G.I. and Glover, L.A. (2001). Development and application of bioluminescent Caenorhabditis elegans as multicellular eukaryotic biosensors. FEBS Lett., 23, 36-39
- Leacock, S.W. and Reinke, V. (2006). Expression profiling of MAP kinase-mediated meiotic progression in Caenorhabditis elegans. PLoS. Genet., 10, e174
- Lee, S.B. and Choi, J. (2006). Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem., 25, 3006-3014 https://doi.org/10.1897/05-601R1.1
- Lee, S.M., Lee, S.B., Park, C.H. and Choi, J. (2006). Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: a potential biomarker of freshwater monitoring. Chemosphere, 65, 1074-1081 https://doi.org/10.1016/j.chemosphere.2006.02.042
- Lee, S.W., Park, K., Hong, J. and Choi, J. (2008). Ecotoxicological evaluation of octachlorostyrene in fourth instar larvae of Chironomus riparius (Diptera, Chironomidae). Environ. Toxicol. Chem., 27, 1118-1127 https://doi.org/10.1897/07-219.1
- Leiers, B., Kampkotter, A., Grevelding, C.G., Link, C.D., Johnson, T.E. and Henkle-Duhrsen, K. (2003). A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic Biol. Med., 34, 1405-1415. https://doi.org/10.1016/S0891-5849(03)00102-3
- Leung, M.C., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aschner, M. and Meyer, J.N. (2008). Caenorhabditis elegans: an Emerging Model in Biomedical and Environmental Toxicology. Toxicol. Sci., published
- Liao, V.H., Dong, J. and Freedman, J.H. (2002). Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. J. Biol. Chem., 277, 42049-42059 https://doi.org/10.1074/jbc.M206740200
- Menzel, R., Rodel, M., Kulas, J. and Steinberg, C.E. (2005). CYP35: Xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch. Biochem. Biophys., 438, 93-102 https://doi.org/10.1016/j.abb.2005.03.020
- Menzel, R., Yeo, H.L., Rienau, S., Li, S., Steinberg, C.E. and Sturzenbaum, S.R. (2007). Cytochrome P450s and shortchain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J. Mol. Biol., 370, 1-13 https://doi.org/10.1016/j.jmb.2007.04.058
- Newman, M.C. and Jagoe, C.H. (1996). Ecotoxicology: a hierarchical treatment, Savannah River series on environmental sciences, Boca Raton, pp. 411
- Peredney, C.L. and Williams, P.L. (2000). Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Arch. Environ. Contam. Toxicol., 39, 113-118
- Paton, G.I., Rattray, E.A.S., Campbell, C.D., Menssen, H., Cresser, M.S., Glover, L.A. and Killham, K. (1997). In: Bioindicators of Soil Health (Pankhurst, C.S., Doube, B. and Gupta, V., Eds.), Wallingford, UK: CAB Intermonitor, pp. 397-418
- Power, R.S. and de Pomerai, D.I. (1999). Effect of single and paired metal inputs in soil on a stress-inducible transgenic nematode. Arch. Environ. Contam. Toxicol., 37, 503- 511 https://doi.org/10.1007/s002449900545
- Poynton, H.C., Varshavsky, J.R., Chang, B., Cavigiolio, G., Chan, S., Holman, P.S., Loguinov, A.V., Bauer, D.J., Komachi, K., Theil, E.C., Perkins, E.J., Hughes, O. and Vulpe, C.D. (2007). Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ. Sci. Technol., 41, 1044-1050 https://doi.org/10.1021/es0615573
- Reichert, K. and Menzel, R. (2005). Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole-genome microarray. Chemosphere, 61, 229-237 https://doi.org/10.1016/j.chemosphere.2005.01.077
- Risso-de Faverney, C., Devaux, A., Lafaurie, M., Girard, J.P. and and Rahmani, R. (2001). Toxic effects of wastewaters collected at upstream and downstream sites of a purification station in cultures of rainbow trout hepatocytes. Arch. Environ. Contam. Toxicol., 41, 129-141 https://doi.org/10.1007/s002440010230
- Roesijadi, G. (1994). Metallothionein induction as a measure of response to metal exposure in aquatic animal. Environ. Health Perspect, 12, 91-95
- Roh, J.Y. and Choi, J. (2008). Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf., doi:10.1016
- Roh, J.Y., Jung, I.H., Lee, J.Y. and Choi, J. (2007). Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans. Toxicology, 237, 126-133 https://doi.org/10.1016/j.tox.2007.05.008
- Roh, J.Y., Lee, J. and Choi, J. (2006). Assessment of stressrelated gene expression in the heavy metal-exposed nematode Caenorhabditis elegans: a potential biomarker for metal-induced toxicity monitoring and environmental risk assessment. Environ. Toxicol. Chem., 25, 2946-2956 https://doi.org/10.1897/05-676R.1
- Russo, J. and Lagadic, L. (2000). Effects of parasitism and pesticide exposure on characteristics and functions of hemocyte populations in the freshwater snail Lymnaea palustris (Gastropoda, Pulmonata). Cell Biol. Toxicol., 16, 15-30 https://doi.org/10.1023/A:1007640519746
- Schafer, W.R. (2006). Neurophysiological methods in C. elegans: an introduction. WormBook, 2, 1-4
- Scholz, S., Kurauchi, K., Kinoshita, M., Oshima, Y., Ozato, K., Schirmer, K. and Wakamatsu, Y. (2005). Analysis of estrogenic effects by quantification of green fluorescent protein in juvenile fish of a transgenic medaka. Environ. Toxicol. Chem., 24, 2553-2561 https://doi.org/10.1897/04-525R.1
- Schroeder, F.C. (2006). Small molecule signaling in Caenorhabditis elegans. ACS Chem Biol., 1, 198-200. Snell, T.W., Brogdon, S.E. and Morgan, M.B. (2003). Gene expression profiling in ecotoxicology. Ecotoxicology, 12, 475-483 https://doi.org/10.1023/B:ECTX.0000003033.09923.a8
- Snell, T.W., Brogdon, S.E. and Morgan, M.B. (2003). Gene expression profiling in ecotoxicology. Ecotoxicology, 12, 475-483 https://doi.org/10.1023/B:ECTX.0000003033.09923.a8
- Steinberg, C.E., Sturzenbaum, S.R. and Menzel. R. (2008). Genes and environment - Striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci. Total Environ. pp. 142-161
- Stringham, E.G. and Candido, E.P. (1994). Transgenic hsp16- lacZ strains of the soil nematode Caenorhabditis elegans as biological monitors of environmental stress. Environ. Toxicol. Chem., 13, 1211-1220 https://doi.org/10.1897/1552-8618(1994)13[1211:THLSOT]2.0.CO;2
- Swain, S.C., Keusekotten, K., Baumeister, R. and Sturzenbaum, S.R. (2004). C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J. Mol. Biol., 341, 951-959 https://doi.org/10.1016/j.jmb.2004.06.050
- Tullet, J.M., Hertweck, M., An, J.H., Baker, J., Hwang, J.Y., Liu, S., Oliveira, R.P., Baumeister, R. and Blackwell, T.K. (2008). Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell, 132, 1025-1038 https://doi.org/10.1016/j.cell.2008.01.030
- Ura, K., Kai, T., Sakata, S., Iguchi, T. and Arizono, K. (2002). Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. J. Health Sci., 48, 583-586 https://doi.org/10.1248/jhs.48.583
- Wang, D.Y. and Wang, Y. (2008). Phenotypic and behavioral defects caused by barium exposure in nematode Caenorhabditis elegans. Arch. Environ. Contam. Toxicol., 54, 447-453 https://doi.org/10.1007/s00244-007-9050-0
- Wang, Y.M., Pu, P. and Le, W.D. (2007). ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in alpha-synuclein transgenic C. elegans. Neurosci Bull., 23, 329-335 https://doi.org/10.1007/s12264-007-0049-3
- Williams, P.L., Anderson, G.L., Johnstone, J.L., Nunn, A.D., Tweedle, M.F. and Wedeking, P. (2000). Caenorhabditis elegans as an alternative animal species. J. Toxicol. Environ. Health A., 61, 641-647 https://doi.org/10.1080/00984100050195125
- Williams, P.L. and Dusenbery, D.B. (1988). Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol. Ind. Health, 4, 469-478 https://doi.org/10.1177/074823378800400406
- Williams, P.L. and Dusenbery, D.B. (1990). Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environ. Toxicol. Chem., 9, 1285-1290 https://doi.org/10.1897/1552-8618(1990)9[1285:ATTUTN]2.0.CO;2
- Yoshimi, T., Minowa, K., Karouna-Renier, N.K., Watanabe, C., Sugaya, Y. and Miura, T. (2002). Activation of stressinduced gene by insecticides in the midge, Chironomus yoshimatsui. J. Biochem. Mol. Toxicol., 16, 10-17 https://doi.org/10.1002/jbt.10018