Comparative study in marginal adaptation of zirconia cores fabricated with 3 different CAD/CAM systems

3종의 CAD/CAM 시스템에서 지르코니아 코어의 변연 적합도에 관한 비교 연구

  • Kwon, Yong-Joong (Department of Dentistry, College of Medicine, Hanyang University) ;
  • Lee, Young-Soo (Department of Dentistry, College of Medicine, Hanyang University) ;
  • Park, Won-Hee (Department of Dentistry, College of Medicine, Hanyang University)
  • 권용중 (한양대학교 의과대학 치과학교실) ;
  • 이영수 (한양대학교 의과대학 치과학교실) ;
  • 박원희 (한양대학교 의과대학 치과학교실)
  • Published : 2008.02.29

Abstract

Statement of problem: There have been many studies about marginal adaptation of Zirconia core fabricated with various CAD/CAM systems. But, the comparative study has not been conducted much. Purpose: This study was to compare marginal adaptations of zirconia cores fabricated with 3 different CAD/CAM systems. Material and methods: The in vitro marginal adaptations of zirconia cores fabricated with 3 different CAD/CAM systems($Adens^{(R)}$ system, $Lava^{(R)}$ system, and $Cerasys^{(R)}$ system) were evaluated and compared. In this study 30 zirconia cores were fabricated(10 zirconia cores per each system). The measurements of the marginal adaptatioin were carried out using microscope $L-150A^{(R)}$(Nikon, Japan). Measurements were recorded at 50 points. The measurements were analyzed using Kruskal-Wallis test and Wilcoxon rank sum test. Results: Within the limits of this study, the results were as follows. 1. Mean marginal gap values obtained were $284.5{\pm}152.9{\mu}m$ in Adens system, $99.0{\pm}73.0{\mu}m$ in Lava system, and $153.5{\pm}85.7{\mu}m$ in Cerasys system. 2. Zirconia core made by Lava system showed the smallest marginal gap(P<0.05). Conclusion: In the limitation of this study, we concluded that $Lava^{(R)}$ System was superior than other systems($Adens^{(R)}$ system and $Cerasys^{(R)}$ system) in the marginal adaptation.

최근 개발된 다양한 CAD/CAM 시스템으로 제작된 지르코니아 코어의 변연 적합도에 관해 많은 연구가 있었다. 그러나 비교 연구는 미흡한 실정이다. 본 연구의 목적은 3종의 CAD/CAM 시스템에서 단일 전부 도재관을 위한 지르코니아 코어의 변연 적합도를 비교하는 것이다. 실험을 통하여 3종의 CAD/CAM 시스템($Adens^{(R)}$ 시스템, $Lava^{(R)}$ 시스템, $Cerasys^{(R)}$ 시스템) 으로 제작된 지르코니아 코어의 변연 적합도를 비교하였다. 각 시스템당 10개의 지르코니아 코어를 제작하였다. 광학현미경($L-150A^{(R)}$, Nikon, Japan)을 사용하여 총 50곳의 변연 간격을 측정하였다. 통계처리는 Kruskal Wallis test와 Wilcoxon Rank Sum test를 시행하였다. 단일 전부 도재관을 위한 지르코니아 코어의 총 변연간격은 $Adens^{(R)}$ 시스템이 $284.5{\pm}152.9{\mu}m$, $Lava^{(R)}$ 시스템이 $99.0{\pm}73.0{\mu}m$, 그리고 $Cerasys^{(R)}$ 시스템이 $153.5{\pm}85.7{\mu}m$ 이었다. 본 연구내에서, $Lava^{(R)}$ 시스템이 다른 시스템에 비해 우수한 변연 적합도를 보였다.

Keywords

References

  1. Bindle A, Mormann WH. Marginal and internal fit of allceramic CAD/CAM crown-coping on chamfer preparations. J Oral Rehabil 2005;32:441-447 https://doi.org/10.1111/j.1365-2842.2005.01446.x
  2. Tinschert J, Natt G, Mautsch W, Spikermann H, Anusavice KJ. Marginal fit of alumina- and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-374
  3. Yang JH, Yeo IS, Lee SH, Han JS, Lee JB. Marginal fit of Celay/In-Ceram, Conventional In-Ceram and Empress 2 All-Ceramic Single crowns. J Kor Acad Prosthodont 2002;40:131-139
  4. Luthardt RG, Sandkuhl O, Reitz B. Zirconia-TZP and alumina- advanced technologies for the manufacturing of single crowns. Eur J Prosthodont Resor Dent 1997;7:113-119
  5. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25 https://doi.org/10.1016/S0142-9612(98)00010-6
  6. Jeong SM, Ludwig K, Kern M. Investigation of the fracture resistance of three types of zirconia posts in all-ceramic post-and core restorations. Int J Prosthodont 2002;15:154-158
  7. Edelhoff D, Sorensen JA. Retention for selected core materials to zirconia posts. Oper Dent 2002;27:455-461
  8. Heydecke G, Butz F, Hussein A, Strub JR. Fracture strength after dynamic loading of endodontically treated teeth restored with different post-and-core systems. J Prosthet Dent 2002;87:438-445 https://doi.org/10.1067/mpr.2002.123849
  9. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of allceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 2004;20:449-456 https://doi.org/10.1016/j.dental.2003.05.002
  10. Lawn BR, Deng Y, Thompson VP. Use of contact testing in the characterization and design of all-ceramic crown-like layer structures : A review. J Prosthet Dent 2001;86:495-510 https://doi.org/10.1067/mpr.2001.119581
  11. Massimiliano G, Kaarel P, Linda Q, Michael VS. Strength, reliability and mode of fracture of bilayered porcelain/zirconia( Y-TZP) dental ceramics. Biomaterials 2004;25:5045-5052 https://doi.org/10.1016/j.biomaterials.2004.02.036
  12. Jeon MH, Jeon YC, Jeong CM, Lim JS, Jeong HC. A study of precise fit of the CAM zirconia all-ceramic framework. J Kor Acad Prosthodont 2005;43:611-621
  13. Seo JY, Park IN, Lee KW. Fracture strength between different connector designs of zirconia core for porsterior fixed partial dentures manufactured with CAD/CAM system. J Kor Acad Prosthodont 2006;44:29-39
  14. Ariel J. Raigrodski. Contemporary materials and technologies for all-ceramic fixed partial dentures: A review of the literature. J Prosthet Dent 2004;92:557-562 https://doi.org/10.1016/j.prosdent.2004.09.015
  15. Suttor D, Bunke K, Hoescheler S, Hauptmann H. Hertlein G. Lava - the system for all-ceramic $ZrO_2$ crown and bridge frameworks. Int J Comput Dent 2001; 3:195-206
  16. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005;113:174-179 https://doi.org/10.1111/j.1600-0722.2004.00197.x
  17. Bader J, Rozier R, McFall W Jr, Ramsey D. Effect of crown margins on periodontal conditions in regulary attending parients. J Prosthet Dent 1991;65:75-79 https://doi.org/10.1016/0022-3913(91)90053-Y
  18. Grasso J, Nalbandian J, Sanford C, Baili H. Effect of restoration quality on periodontal health. J Prosthet Dent 1985;53:14-19 https://doi.org/10.1016/0022-3913(85)90056-3
  19. Schwartz N, Whitsett L, Berry T, Stewart J. Unserviceable crowns and fixed partial dentures : lifespan and causes for loss of serviceability. J Amer Dent Ass 1970;81:1395-1401 https://doi.org/10.14219/jada.archive.1970.0398
  20. Felton D, Kanoy B, Bayne S, Wirthman G. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent 1991;65:357-364 https://doi.org/10.1016/0022-3913(91)90225-L
  21. Walton J, Gardner F, Agar J. A survey of crown and fixed partial denture failures : length of service and reasons for replacement. J Prosthet Dent 1986;56:416-421 https://doi.org/10.1016/0022-3913(86)90379-3
  22. Boening KW, Wolf BH. Clinical fit of Procera AllCeram crown. J Prosthet Dent 2000;84:419-424 https://doi.org/10.1067/mpr.2000.109125
  23. Hertlein G, Hoescheler S, Frank S, Suttor D. Marginal fit of CAD/CAM manufactured all ceramic zirconia prosthesis. J Dent Res 2001;80:42
  24. Carter JM, Sorensen SE, Johnson RR, Teitelbaum RL, Levine MS. Punch shear testing of extracted vital and endodontically treated teeth. J Biomech 1983;16:841-848 https://doi.org/10.1016/0021-9290(83)90008-8
  25. Strawn SE, White JM, Marshall GW, Gee L, Goodis HE, Marshall SJ. Spectroscopic changes in human dentine exposed to various storage solution-short term. J Dent 1996;24:417-423 https://doi.org/10.1016/0300-5712(95)00106-9
  26. Chang JY. Yang JH. Han JS. Lee JB. In vitro marginal fit of the computer-aided milled cercon crowns. J Kor Acad Prostho- dont 2005;43:306-313
  27. Koo JY, Lim JH, Cho IH. Marginal fidelity according to the margin types of all ceramic crowns. J Kor Acad Prosthodont 1997;35:445-457
  28. Pera P, Bassi F, Carossa S. In vitro marginal adaptation of alumina porcelain ceramic crown. J Prosthet Dent 1994;72: 585-590 https://doi.org/10.1016/0022-3913(94)90289-5
  29. White SN, Kipnis V. Effect of adhesive luting agents on the marginal seating of cast restorations. J Prosthet Dent 1993; 69:28-31 https://doi.org/10.1016/0022-3913(93)90235-G
  30. Gorodovsky S, Zidan O. Retentive strength, disintegration, and marginal quality of luting cements. J Prosthet Dent 1992;68:269-274 https://doi.org/10.1016/0022-3913(92)90328-8
  31. Lacy AM, Wade C, Du W, Watanabe L. In vitro microleakage at gingival margin of porcelain and resin veneers. J Prosthet Dent 1992;67:7-10 https://doi.org/10.1016/0022-3913(92)90038-C
  32. McLean JW, Von Fraunhofer JA. The estimation of cement film thickness by in vivo technique. Br Dent J 1971;131:107-111 https://doi.org/10.1038/sj.bdj.4802708
  33. Scherrer S, Rijk W, Beslser U. Fracture resistance of human enamel and three all-ceramic crown systems on extracted teeth. Int J Prosthodont 1996;9:580-585
  34. Davis DR. Comparison of fit of two types of all ceramic crowns. J Prosthet Dent 1988;59:13-16
  35. Abbate MF, Tjan A, Fox WM. Comparison of marginal fit of various ceramic crown systems. J Prosthet Dent 1989;61:527-531 https://doi.org/10.1016/0022-3913(89)90270-9
  36. Wu JC, Wilson PR. Optimal cement space of resin luting cement. Int J Prosthodont 1994;7:209-215
  37. Bruckl CE, Nicholson JW, Norling BK. Crown retention and seating on natural teeth with a resin cement. J Prosthet Dent 1985;53:618-622 https://doi.org/10.1016/0022-3913(85)90003-4
  38. Yu JH, Kim YC, Kang DW. A study on the marginal fidelities and fracture strength of IPS Empress $2^{\circledR}$ ceramic crowns. J Kor Acad Prosthodont 2000;38:606-617
  39. Sorensen JA. A standardized method for determination of crown margin fidelity. J Prosthet Dent 1990;64:18-24 https://doi.org/10.1016/0022-3913(90)90147-5
  40. Leong D, Chai J, Lautenschlager E, Gilbert J. Marginal fit of machine-milled titanium and cast titanium single crown. Int J Prosthodont 1994;7:440-447
  41. Moon BH, Yang JH, Lee SH, Chung HY. A study on the marginal fit of all-ceramic crown using ccd camera. J Kor Acad Prosthodont 1998;36:273-292
  42. Groten M, Axmann D, Poster L, Weber H. Determination of the minimum number of marginal gap measurement required for practical in vitro testing. J Prosthet Dent 2000;83:40-49 https://doi.org/10.1016/S0022-3913(00)70087-4
  43. Gassino G, Barone Monfin S, Scanu M, Spina G, Preti G. Marginal adaptation of fixed prosthodontics : a new in vitro 360-degree external examination procedure. Int J Prosthodont 2004;17:218-223
  44. Sturdevant JR, Bayne SC, Heymann HO. Margin gap size of ceramic inlays using second-generation CAD/CAM equipment. J Esthet Dent 1999;11:206-214 https://doi.org/10.1111/j.1708-8240.1999.tb00400.x
  45. Mormann WH, Schug J. Grinding precision and accuracy of fit of CEREC 2 CAD-CIM inlays. JADA 1997;128:47-53 https://doi.org/10.14219/jada.archive.1997.0025
  46. Holmes JR, Sulik WD, Holland GA, Bayne SC. Marginal fit of castable crown. J Prosthet Dent 1992;67:594-599 https://doi.org/10.1016/0022-3913(92)90153-2
  47. Hunter AJ, Hunter AR. Gingival margin for crowns : A review and discussion Part II : Discrepancies and configurations. J Prosthet Dent 1990;64:636-642 https://doi.org/10.1016/0022-3913(90)90286-L
  48. Pilo R, Cardash HS, Baharav H, Helfit M. Incomplete seating of cemented crown : A literature review. J Prosthet Dent 1988; 59:429-433 https://doi.org/10.1016/0022-3913(88)90037-6
  49. Christensen GJ. Marginal fit of gold inlay casting. J Prosthet Dent 1966;16:297-305 https://doi.org/10.1016/0022-3913(66)90082-5
  50. Kydd WL, Nicholls JI, Harrington G, Freeman M. Marginal leakage of cast gold crowns luted with zinc phosphate cement : an in vivo study. J Prosthet Dent 1996;75:9-13 https://doi.org/10.1016/S0022-3913(96)90411-4
  51. Fransson B, Oilo G, Gjeitanger R. The fit of metal-ceramic crowns, a clinicl study. Dent Mater 1985;1:197-199 https://doi.org/10.1016/S0109-5641(85)80019-1
  52. Boening KW, Walter MH, Reppel PD. Non-cast titanium restoration in fixed prosthodontics. J Oral Rehabil 1992;19: 281-287 https://doi.org/10.1111/j.1365-2842.1992.tb01103.x