이중관으로 연결된 자연치와 임플랜트의 악골 내응력분포에 관한 3차원 유한요소분석

A Study on the Stress Distribution of Tooth/Implant Connected with Konus Telescope Denture Using 3-Dimensional Finite Element Method

  • 이수옥 (경희대학교 치과대학 치과보철학교실, 구강생물학 연구소) ;
  • 최대균 (경희대학교 치과대학 치과보철학교실, 구강생물학 연구소) ;
  • 권긍록 (경희대학교 치과대학 치과보철학교실, 구강생물학 연구소) ;
  • 우이형 (경희대학교 치과대학 치과보철학교실, 구강생물학 연구소)
  • Lee, Su-Ok (Department of Prosthodontics and Institue of Oral Biology, School of Dentistry, Kyung-Hee University) ;
  • Choi, Dae-Gyun (Department of Prosthodontics and Institue of Oral Biology, School of Dentistry, Kyung-Hee University) ;
  • Kwon, Kung-Rock (Department of Prosthodontics and Institue of Oral Biology, School of Dentistry, Kyung-Hee University) ;
  • Woo, Yi-Hyung (Department of Prosthodontics and Institue of Oral Biology, School of Dentistry, Kyung-Hee University)
  • 발행 : 2008.08.29

초록

서론: 임플랜트와 자연치가 혼재하는 증례에 있어서 보철물의 연결여부와 그 결과에 대해 논쟁이 많이 있어왔다. 본 연구에서는 임플랜트와 자연치를 이중관으로 연결했을 경우에 치조골 내에서 임플랜트 주변 조직의 하중에 대한 응력의 양상을 분석하여 자연 치와 임플랜트를 연결하는 보철물의 방식으로 이중관의 사용가능성을 비교 분석하고자 하였다. 연구재료 및 방법: 실험군으로서는 한 개의 자연치아와 한 개의 임플랜트를 이중관으로 연결한 모델을 사용하고, 대조군으로 두 개의 임플랜트를 이중관으로 연결한 모델을 사용하여 응력분포의 차이를 비교분석하였다. 임플랜트와 자연치 각각 통상적인 금합금을 사용하여 내,외관을 모델링한 후 각각의 외관을 연결한 구조를 형성한다. 내관과 외관은 $6^{\circ}$의 경사도 (taper)로 형성하고 내외관 사이의 공간을 인정하여, 하중을 가했을 경우 내외관 사이에 합금의 마찰력과 변위를 계산하여, 그 결과가 골내 임플랜트의 응력 분포에 영향을 줄 수 있도록 실험모델을 형성하였다. 하중은 일반적인 저작력의 크기로 임플랜트 부위와 자연치 부위에 각각 부여하여 응력의 차이를 비교하였으며, 최종적으로 대조군과의 차이를 비교하고자 하였다. 하중 조건은 임플랜트와 자연치아 사이, 임플랜트 후방, 전방부 자연치아의 사이에 하중을 가하였으며, Load case 1, 2, 3로 분류하였다. 실험을 위해서 ANSYS Version 8.1을 사용하여 3차원 유한 요소 분석을 시행하였다. 연구성적: 지대주에 가해지는 응력 - 최대 응력은 실험군이 대조군에 비해 각각 2.4 (Load Case1), 1.02 (Load Case2), 0.46 (Load Case3)배 높게 나타났으며,Load Case3의 경우 대조군의 최대응력이 더욱 높게 나타났는데, 이것은 전치부 치아의 경우 하중을 효과적으로 분산하기 때문인 것으로 보인다. 악골내에 가해지는 응력 - 악골내에서 최대 응력은 실험군이 대조군에 비해 각각 1.69 (Load Case1), 1.26 (Load Case2), 1.93 (Load Case3) 배 크게 나타났다 결론: 임플랜트와 자연치아가 혼재된 경우, 이중관으로 상부 보철물을 연결한 경우, 임플랜트만으로 구성된 대조군에 비해, 임플랜트 및 임플랜트 식립 부위의 악골에 가해지는 최대 응력은 1.02 에서 2.4배 가량 높게 나타났다. 자연치아의 움직임이 임플랜트의 경부 및 악골 내에 응력을 집중시킨 것으로 보이며, 자연치아가 있는 악골부위에서는 응력이 거의 발생하지 않았다. 본 실험의 경우 자연치아와 임플랜트에서 모든 하중을 받는 것으로 계산하였고, 실제 가철성 의치에서 나타나는 점막의 영향을 배제하였기 때문에, 실제 임상에서는 후방 임플랜트에 미치는 최대 응력의 크기는 2.4배 이하일 것으로 추정할 수 있다. 앞으로, 실제 임상에 적용하였을 경우, 임플랜트에 미치는 영향 및 자연치아에 미치는 결과에 대한 연구가 필요할 것이다.

Purpoose: For decades dental implants have been used widely in the field of prosthetic dentistry. However there is confusion when establishing treatment plans in cases where some teeth are remained but an insufficient number of implants can be used due to limited anatomical status and ecomomical problems. Many clinicians have tried to connect natural teeth and implants, and it still has controversy. But, there have been few studies on mechanical analysis of connecting natural teeth and implants with konus telescopic removable partial dentures. The purpose of this study was to analyze the stress distribution of prosthesis, abutment and alveolar bone when teeth and implants were connected with the konus telescopic denture, by means of 3-dimensional finite element analysis. Material and methods: The assumption of this study was that there were 2 mandibular canine (11 mm in length, 4 mm in diameter) and 2 implants(10 mm in length, 4 mm in diameter) which are located in the second premolar region. The mandible, teeth, implants, abutments, and connectors are modeled, and analyzed with the commercial software, ANSYS Version 8.1(Swanson, Inc., USA). The control group used implants instead of natural teeth. 21038 elements, 23544 nodes were used in experimental group and 107595 elements, 21963 nodes were used in control group, Stress distribution was evaluated under 150 N vertical load on 3 experimental conditions - between teeth and implants (Load case 1), posterior to implants (Load case 2), between natural teeth (Load case 3). Results: 1. In all load cases, higher von mises stress value was observed in the experimental group. 2. Maximum von miss stress observed in all load cases and all locations were as follows ; a. 929.44 Mpa in the experimental group, 640.044 Mpa in the control group in outer crown and connector - The experimental group showed 1.45 times high value compared with the control group. b. 145,051 Mpa in the experimental group, 142.338 Mpa in the control group in abutment - The experimental group showed 1.02times high value compared with the control group. c. 32.489 Mpa in the experimental group, 25.765 Mpa in the control group in alveolar bone - The experimental group showed 1.26times higher value compared with the control group. 3. All maximum von mises stress was observed in load case 2, and maxim von mises stress in alveolar bone was 32.489 Mpa at which implant failure cannot occur. 4. If maximum von mises stress is compared between two groups, the value of the experimental group is 1.02 times higher than the control group in abutment, 1.26 times higher than the control group in alveolar bone. Conclusion: If natural teeth and implants are connected with the konus telescopic denture, maximum stress will be similar in abutment, 1.26 times higher in alveolar bone than the control group. With this result, there may be possible to make to avoid konus telescopic dentures where natural teeth and implants exist together.

키워드

참고문헌

  1. Ericsson I. The combined effect of plaque and physical stress on periodontal tissues. J Clin Periodontol 1986;13:918-22 https://doi.org/10.1111/j.1600-051X.1986.tb01427.x
  2. Gunne J, Astrand P, Ahlen K, Borg K, Olsson M. Implants in partial edentulous patients: a longitudinal study of bridges supported by natural teeth. Clin Oral Implants Res 1992;3:49-56 https://doi.org/10.1034/j.1600-0501.1992.030201.x
  3. Naert I, Quirynen M, van Steenberghe D, Darius P. A sixyear prosthodontic study of 509 consecutively inserted implants for treatment of partial edentulism. J Prosthet Dent 1992;67:236-45 https://doi.org/10.1016/0022-3913(92)90461-I
  4. Ollsson M, Gunne J, Astrand P, Borg K. Bridges supported by free-standing implants versus bridges supported by tooth and implant. A five-year prospective study. Clin Oral Implants Res 1995;6:114-21 https://doi.org/10.1034/j.1600-0501.1995.060207.x
  5. Naert IE, Ducky JA, Honsy MM, van Steenberghe D. Freestanding and tooth-implant connected prostheses in the treatment of partially edentulous patients. Part I: An up to 15-years radiographic evaluation. Clin Oral Implants Res 2001;12:237-44 https://doi.org/10.1034/j.1600-0501.2001.012003237.x
  6. Naert IE, Duyck JA, Hosny MM, Quirynen M, van Steenberghe D. Freestanding and tooth-implant connected prostheses in the treatment of partially edentulous patients Part II: An up to 15-years radiographic evaluation. Clin Oral Implants Res 2001;12:245-51 https://doi.org/10.1034/j.1600-0501.2001.012003245.x
  7. Pesun IJ. Intrusion of teeth in the combination implant-tonatural- tooth fixed partial denture: a review of the theories. J Prosthodont 1997;6:268-77 https://doi.org/10.1111/j.1532-849X.1997.tb00107.x
  8. Nishimura RD, Ochiai KT, Caputo AA, Jeong CM. Photoelastic stress analysis of load transfer to implants and natural teeth comparing rigid and semirigid connectors. J Prosthet Dent 1999;81:696-703 https://doi.org/10.1016/S0022-3913(99)70109-5
  9. McGlumphy EA, Campagni WV, Peterson LJ. A comparison of the stress transfer characteristics of a dental implant with a regid or a resilient internal element. J Prosthet Dent 1989;62:586-93 https://doi.org/10.1016/0022-3913(89)90085-1
  10. Mathews MF, Breeding LC, Dixon DL, Aquilino SA. The effect of connector design on cement retention in an implant and natural tooth-supported fixed partial denture. J Prosthet Dent 1991;65:822-7 https://doi.org/10.1016/S0022-3913(05)80021-6
  11. Kay HB. Free-standing versus implant-tooth-interconnected restorations: understanding the prosthodontic perspective. Int J Periodontics Restorative Dent 1993;13:47-69
  12. Morrow RM, Feldmann EE, Rudd KD, Trovillion HM. Tooth-supported complete dentures: an approach to preventive prosthodontics. J Prosthet Dent 1969;21:513-22 https://doi.org/10.1016/0022-3913(69)90073-0
  13. Ross SE, Schultz IM, Ross KE. An introductory therapeutic modality for restoring implants and natural teeth using conus crowns: a 5-year case report. Int J Periodontics Restorative Dent 1999;19:569-77
  14. Longoni S, Apruzzese D, Careddu G, Sartori M, Davide R. New telescopic crown protocol for partially edentulous patients: report of 32 cases. Int J Periodontics Restorative Dent 2005;25:475-81
  15. Fenton A, Jamshaid D, Davis D. Osseointegrated fixture mobility(abstract). J Dent Res 1987;66:114
  16. Richter EJ, Spiekermann H, Jovanovic SA. Tooth-to implant fixed prostheses : Biomechanics based on in vitro and in vivo measurement. In : Laney W R, and Tolman DE, eds, Tissue integration in oral, orthopedic & maxillofacial reconstruction. Quintessence Publ. Co, Chicago, 1992
  17. Lundgren D, Falk H, Laurell L. Prerequisites for 'stiff' connection between osseointegrated implants and natural teeth. J Dent Res 1988;67:347
  18. Lin CL, Chang SH, Wang JC, Chang WJ. Mechanical interactions of an implant/tooth-supported system under different periodontal supports and number of splinted teeth with rigid and non-rigid connections. J Dent 2006;34:682- 91 https://doi.org/10.1016/j.jdent.2005.12.011
  19. Akagawa Y, Sato Y, Teixeira ER, Shindoi N, Wadamoto M. A mimic osseointegrated implant model for three-dimensional finite element analysis. J Oral Rehabil 2003;30:41-5 https://doi.org/10.1046/j.1365-2842.2003.01002.x
  20. Menicucci G, Lorenzetti M, Pera P, Preti G. Mandibular implant-retained overdenture: finite element analysis of two anchorage systems. Int J Oral Maxillofac Implants 1998;13:369-76
  21. Yokoyama S, Wakabayashi N, Shiota M, Ohyama T. Stress analysis in edentulous mandibular bone supporting implant-retained 1-piece or multiple superstructures. Int J Oral Maxillofac Implants 2005;20:578-83
  22. Lim JK, Accuracy Estimation and Control Methods of Finite Element Solutions. J KSME 1994;34:502
  23. Farah JW, Craig RG, Meroueh KA. Finite element analysis of three-and four-unit bridges. J Oral Rehabil 1989;16:603-11 https://doi.org/10.1111/j.1365-2842.1989.tb01384.x
  24. Lavernia CJ, Cook SD, Weinstein AM, Klawitter JJ. An analysis of stresses in a dental implant system. J Biomech 1981;14:555-60 https://doi.org/10.1016/0021-9290(81)90005-1
  25. Glickman I. Clinical periodontology, Philadelphia, 1972, W,B. Saunders Company, pp29, 329
  26. Karlheinz Korber 저, 우이형 역: 원추관-합리적인 텔레스코프 시스템을 위한 임상이론과 기공과정의 입문. 신흥인터네셔날 1998; p70
  27. Koak JY, Kim KN, Chang IT, Heo SJ. A study on the stress distribution of abutment teeth and residual ridge area between telescopic and clasp type RPD by fem method. J Kor Acad Prosthodont 1999;37:104-26
  28. Ralph WJ. The effects of dental treatment on biting force. J Prosthet Dent 1979;41:143-5 https://doi.org/10.1016/0022-3913(79)90296-8
  29. Smith DE. Review of endosseous implants for partially edentulous patients. Int J Prosthodont 1990;3:12-9
  30. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10;387-416 https://doi.org/10.1016/S0300-9785(81)80077-4
  31. Jemt T, Lekholm U. Implant treatment in edentulous maxillae: a 5-year follow-up report on on patients with different degrees of jaw resorption. Int J Oral Maxillofac Implants 1995;10:303-11
  32. Gunne J, Jemt T, Linden B. Implant treatment in parially edentulous patients: A report on prostheses after 3 years. Int J Prosthodont 1994;7:143-8
  33. Hug S, Mantokoudis D, Mericske-Stern R. Clinical evaluation of 3 overdenture concept with roots and implants. Int J Prosthodont 2006;19:236-43
  34. ANSYS 'ANSYS Workbench Education Manual Release 8.0'
  35. Zienkiewicz OC, Taylor RL. The Finite Element Method. McGraw Hill International Edition, 1989
  36. Thomas JR Hughes. The Finite Element Method: linear static and dynamic finite element analysis. Prentice-Hall Inc, 1987
  37. Phillips RW. Science of dental materials 8thed. Philadelphia, W.B. Saunders Co 1982
  38. Choi SH, Chung CH. Finite element analysis of stresses and deflections induced by fixed partial denture using en-dosteal implant. J Kor Acad Prosthodont 1991;29:233
  39. Astrand P, Borg K, Gunne J, Olsson M. Combination of natural teeth and osseointegrated implants as prosthesis abutments: a 2-year longitudinal study. Int J Oral Maxillofac Implants 1991;6:305-12
  40. Takahashi N, Kitagami T, Komori T. Analysis of stress on a fixed partial denture with a blade-vent implant abutment. J Prosthet Dent 1978;40:186-91 https://doi.org/10.1016/0022-3913(78)90016-1
  41. Rieger MR, Adams WK, Kinzel GL. A finite element survey of eleven endosseous implants. J Prosthet Dent 1990;63:457-65 https://doi.org/10.1016/0022-3913(90)90238-8
  42. Chapman RJ. Principles of occlusion for implant prostheses: guidelines for position, timing, and force of occlusal contacts. Quintessence Int 1989;20:473-80
  43. Schnitman PA, Rubenstein JE, Who¨rle PS, DaSilva JD, Koch GG. Periodontal considerations of implants for partial edentulism. J Dent Educ 1988;52:725-36
  44. Skalak R. Biomechanical coonsiderations in osseointegration prostheses. J Prosthet Dent 1983;49:843-8 https://doi.org/10.1016/0022-3913(83)90361-X
  45. Besimo C, Graber G. A new concept of overdentures with telescope crowns on osseointegrated implants. Int J Periodontics Restorative Dent 1994;14:486-95