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An Adaptive Input Data Space Parting Solution to the Synthesis
of Neuro-Fuzzy Models

Sy Dzung Nguyen and Kieu Nhi Ngo

Abstract: This study presents an approach for approximation an unknown function from a
numerical data set based on the synthesis of a neuro-fuzzy model. An adaptive input data space
parting method, which is used for building hyperbox-shaped clusters in the input data space, is
proposed. Each data cluster is implemented here as a fuzzy set using a membership function MF
with a hyperbox core that is constructed from a min vertex and a max vertex. The focus of
interest in proposed approach is to increase degree of fit between characteristics of the given
numerical data set and the established fuzzy sets used to approximate it. A new cutting procedure,
named NCP, is proposed. The NCP is an adaptive cutting procedure using a pure function &
and a penalty function 7 for direction the input data space parting process. New algorithms
named CSHL, HLM] and HLM?2 are presented. The first new algorithm, CSHL, built based on the
cutting procedure NCP, is used to create hyperbox-shaped data clusters. The second and the third
algorithm are used to establish adaptive neuro-fuzzy inference systems. A series of numerical
experiments are performed to assess the efficiency of the proposed approach.

Keywords: Fuzzy set, hyperbox-shaped cluster, hyperplane-shaped cluster, min-max hyperbox,

neuro-fuzzy inference systems.

1. INTRODUCTION

Fuzzy systems are successfully applied to many
different application areas. They are very suitable for
complex systems when it is difficult or impossible to
describe the system mathematically. A neuro-fuzzy
paradigm for the solution of function approximation
problems is one of the useful applications of fuzzy
systems.

In general, given the set Ty consists of the input-

output X)X =[x Xpx],

i=1...P, which expresses the values of an unknown
function f at points X; (y; = f(x)). System
modeling is defined by extrapolation the function f
based on these known data. It is well known that there
are some existing algorithms to solve this problem
based on the fuzzy inference system called T-S model
which was proposed by Takagi and Sugeno [7]. The
kth rule of this fuzzy model is as following:

data pairs

R® . Ifx;; is Bl(k) and ... and x;, is B,(,k)
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then

n
k k
Vi = Za§~ )xl-j +a(() ), (1)
Jj=1

where X; =[x,~1,x,~2,...,xl~n]T is the ith input data
vector of Ty ; B® s the input fuzzy set; [a(k),

al(k),...,a,gk)]T is the weight vector; y;; is output
data; j=1..n, n is the dimension of input set;

k=1...M, M is the number of IF-THEN rules.

Based on the T-S model, the input data set is
partitioned to build data clusters. Each data cluster is
implemented here can be considered as a crisp frame
on which different types of MFs (and firing strengths)
can be adapted. Some serious drawbacks often affect
the clustering algorithms adopted in this context,
according to the particular data spaces where they are
applied. To overcome such problems, M. Panella et al.
[1] proposed a more refined procedure, so that each
hyperplane-shaped cluster could be determined in
correspondence to the consequent part of the T-S rule.
In this approach pure status of the clusters in the input
space is established by using the ARC cutting
procedure of [2]. Although the suggested solution of
[1] has the advantage, the ARC cutting procedure
sometimes manifests shortcoming when it chooses
dimension to cut. This respect will be more clearly
described in the example presented in Fig. 2 (Sec. 4).

In this paper we present a new cutting procedure
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built based on the pure function w and the penalty

function 7 to direct better the input data space
parting process. These functions denote distributive
status of the labeled patterns according as the
coordinate axis chosen to cut. In other words, they
express degree of pure distributive state of the labeled
patterns depending on each cutting solution. This new
cutting procedure is used for building the three new
algorithms named CSHL, HLMI and HLM2, which
are used for the synthesis of adaptive neuron-fuzzy
inference systems.

The study is organized in the following manner.
First, Section 2 briefly introduces the hyperplane
clustering algorithm of [1], which will be used in this
article. Section 3 gives some basic definitions relating
to this researching. The new algorithms, CSHL, HLM]I
and HLM?2, are presented in Sections 4, 5, and 6. In
Section 7, we report on comprehensive set of
experiments. Finally concluding remarks are covered
in Section 8.

2. THE HYPERPLANE CLUSTERING
ALGORITHM [1]

In this section we briefly redeliver the Hyperplane
Clustering algorithm of [1] which will be used in this
article.

Initialization: Given a value of M, the hyper-
planes are initialized using the well-known C-Means
algorithm. It is applied in the input space, where the

initialized. Let T,

k=1..M, be the clusters found by the C-Means

algorithm in the input space. The correspondence
between such clusters and the hyperplanes is based on
the following criterion: If an input pattern

X,i=1..P, belongs to the cluster [V 1<g< M,

centroids are randomly

then the corresponding input-output pair (X;,y;) is
assigned to the hyperplane 4.

Step 1: The coefficients of each hyperplane are
updated using the pairs assigned to either in the
initialization or in the successive step 2. For the kth
hyperplane, &k =1...M, a set of linear equations has to
be solved

n
k k
Vs :Zag- )xtj+a(()), (2)
j=l

where index ¢ spans all the pairs assigned to the kth
hyperplane. Suited least-squares technique can be
used to solve the set of linear equations in (2).

Step 2: Each pair (x;,y;)of the training set is
assigned to the updated hyperplane 4,, with ¢ such
that:

n
Vi —{zaﬁq)xij + aéq)j
d; =|——2

= min

- Stop criterion:

O = ‘D __D(old)'/D(old) ’

where D is the approximation error calculated
in the previous iteration.

If ® <@ then the clustering algorithm is stopped,
else: go back to Step 1. In this paper, we use the
default value 6=0.01.

3. BASIC DEFINITIONS

3.1. Hyperplane-shaped cluster and label of a pattern

Given the initial data pattern set T . If we use the
Hyperplane Clustering algorithm of [1] for Ty with
M fuzzy rules, then we have M labeled hyperplane-
shaped clusters. If the pattern X; =[x;x,...x;,]
belongs to the hyperplane-shaped cluster labeled £,
then we say that the label of the pattern X; is &, or
the pattern X; belongs to the class label £.

The Hyperplane Clustering algorithm creates a
hybrid hyperbox AHB covering all the labeled
patterns belonging to the initial training pattern set
Is .

3.2. Min-max hyperbox and min-max vertexes

The min-max clustering technique concerns cover-
ing the patterns of the data pattern set using min-max
hyperboxes (HB).

Let 7, be the set of the patterns covered by the rth
min-max hyperbox HB,. The HB, has two vertexes,

the max vertex @, and the min vertex v, defined as
following:

o, =|onw,..0 ], v, =[Vavin-Vyl,

where
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Fig. 1. The min-max hyperbox in %>.

a)t' :max(xz_']' |‘fl ETI)’

y j=1l.n

Vs

g =min(x; |X;€), j=l.n.

Each min-max hyperbox (or briefly, hyperbox) can
be identified by boundary hyperplanes parallel with
the correlative coordinate axes of the data space, such
that each hyperplane across one of the two max-min
vertexes, either the max vertex or the min vertex (Fig.

1.

3.3. Hyperbox-shaped cluster
All of patterns of the data pattern set 7, covered

by a hyperbox can be considered as a data cluster
called the hyperbox-shaped cluster (or briefly, the
hyperbox cluster).

3.4. Pure hyperbox and hybrid hyperbox

Consider the 7th hyperbox HB; covers a set T of the
labeled patterns:

- If T, consists of the patterns associated with the
class label m only, then the HB; will be said to be the

pure hyperbox labeling m, and signed pHB,(m) .

-1If T, #& andthe HB, is not the pure hyperbox,
i.e., T; consists of the patterns associated with more
than one class label, then the HB, will be said to be
the hybrid hyperbox, and signed 7HB, .

3.5. The overlap condition

Given the hyperbox HB,,. Consider an arbitrary

hyperbox HBy,h#k. We say that the HB;, does

not overlap with the HB, if and only if:
a_)h <\7k or 17],1 >5k‘
Let L, be the set of all the pure hyperboxes which

are created from the initial data pattern set 7y. Let L,

be the set of all the hybrid hyperboxes which are
created from the initial data pattern set Ty, i.e.,

Ty, Tz, =Ty,
where

Ty,
Ty, is the set of all patterns belonging to Lj.

is the set of all patterns belonging to L,,

We say that the HB, satisfies the overlap condition
if and only if the HB, does not overlap with any
hyper-box HB in L, and in L, (neither pure nor hybrid).

3.6. Fusion hyperbox
Given two pure hyperboxes pHB;(lm) and

pHB](C'”), h#k, labeling m. A hyperbox labeling m,
signed pHBﬁ,m) , will be the fusion hyperbox between

the pair of these hyperboxes pHB}(lm) and pHB,(cm)

if and only if the three following conditions are
concurrently satisfied:

2) a_)f =max(@y,®,) and Vmein(VkvVh)

3) pHB}m) satisfies the overlap condition,

where T, T, and T, are the sets of patterns be-
longing to pHB}(lm), pHB,(Cm) and pHBf,m), re-

spectively.

3.7. The membership function

The membership function MF for each hyperbox
fuzzy set describes the degree to which a pattern fits
within the hyperbox. In addition, it is typical to have
fuzzy membership values range between 0 and 1.

4. PURE FUNCTION, PENALTY FUNCTION
AND ALGORITHM CSHL

In this section we present a new algorithm named
CSHL used to cut hybrid hyperboxes in order to build
pure hyperboxes.

4.1. Pure function

Given the hybrid hyperbox AHB in R" covering
patterns (X;,¥;), % =[x;Xip-.X;,] .

Consider the two class labels v [ and ni_2 which
are the most frequent ones with respect to the whole
number of the patterns covered by this AHB. Let S;
and n; be set of the patterns labeling n# / and the
number of these patterns in S}, respectively. Let S, and
ny (m 2 ny) be set of the patterns labeling #»k2 2 and
the number of these patterns in .S,, respectively. Let C;
and C, be the centroids of S; and S,. We use the
notation d; to express their distance along the ith

coordinate axis, i.e.,

d; =|Cy; — Cyili=1..n. (3a)

Let a;, i=1..n be the average value between the
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ith axis coordinates of C; and (5, i.e.,
Q; =(Ch- +Cz,-)/2 i=1l.n (3b)

Let C; be the point on ith coordinate axis at
coordinate «; . We use the notation MC;,i=1..n, to

represent the hyperplane perpendicular to the ith
coordinate axis at C;. Each MC; cuts the hybrid

hyperbox AHB in two, signed HB; and HB,. So we
have » cutting ways to choose.

Let nlu and n;j be the number of the patterns
labeling nh_I and nh 2 covered by the HB,,
respectively; let nlzf and n%j also be the number of

the patterns labeling n#_I and nh 2 covered by the
HB;, respectively, when the cutting operation is
executed on coordinate axis j, j=l1...n.

Let l//lj , sz be functions defined as following:

1 1 2 2
17 I’ll }’lz‘ 2 I’l]‘ ﬂz'

y = =, =2
?’ll 15) 1?1 Hy

:>0S(//Ij =(//2j <l

Let w/ be the pure function. It is defined as
following

- O]

where due to wlj :‘-‘l/lzj so we can freely choose,
either the HB, or the HB,, to establish the pure
function {(4).

We outline that each value of the pure function y’
expresses a distributive status of the patterns labeling
nh_I and nh_2 in the HB; and the HB,. For example,
consider some values of the function w/ as
following:

-If l//j =0 : we can infer that if cutting operation

is executed on coordinate axis /, then the ratios of the
number of the patterns labeling nh I and nh 2
covered by the HB, to the number of the patterns
labeling nhi_1 and nh_2 covered by the initial hybrid
hyperbox 2HB, respectively, are the same , i.e.,

1/ 1j

n I

1 My
—— ===k,
m )

In addition, if &, =50% then we can see that the
number of the patterns labeling nk I (or nh_2) in the
HB,; and the number of the patterns labeling nh I (or
nh_2) in the HB, are equal.

Clearly, we should avoid these distributive statuses

because in these cases, the convergent speed of data
space parting process is slow. This respect will be
denoted by the penalty function z in the next section.

-If w’ =1: we can infer that if cutting operation is
executed on coordinate axis j, then the ratio of the
number of patterns labeling n/ I covered by the HB,
to the number of patterns labeling nh I covered by
the initial hybrid hyperbox AHB is 100% (or 0%), and
the ratio of the number of patterns labeling nh 2
covered by the HB; to the number of patterns labeling
nh_2 covered by the initial hybrid hyperbox hHB,
conversely, is 0% {(or 100%). It is the same as the
distributive status in HB,. Clearly, we want to get this
distributive status to increase the convergent speed of
the data space parting process building pure hyper-
boxes. This respect will also be denoted by the penalty
function r in the next section.

In general, the pure function y/j shows the pure

degree of distributive statuses of patterns labeling
nh 1 and nh 2 in the HB; and the HB; according as
the coordinate axis chosen to cut. The higher value of

the function w/, the more purebred degree of

distribution of patterns labeling ni_I and nh_2 in HB,
and HB;, and conversely.

4.2. Penalty function
Penalty function 7, is defined as following:

0 if v <sg
;= W' +A) i w2 £y (5a)
| if &< w' < &,
where
le162.A1 (5b)

is the parameter vector used for direction for input
data space parting process, which is rewarded if

w! > &, or penalized if l//j < g, or not influenced
if g <;g/j <&,. Here, j=1..n, nis the dimension
of input data space pattern set Ty. In the following

experiments, we will use & =0.05; &, =0.95.

So, if we use the cutting hyperplanes MC;, j=1...n,
to cut the AHB in two, the HB; and the HB, , we will
have n different values of the penalty function

T j= 1...n, i.e., have n solutions to choose.,

4.3. Algorithm CSHL
According to the above detail analysis, we can see
that the direction for the data space parting process

can be based on the pure function w’ and the

penalty function z;. The pure function w’ denotes
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distributive status of the patterns labeling #nA 1 and
nh 2 in the HB,; and the HB; according as the axis

chosen to cut. The penalty function 7; expresses

preference to the parting solution having high value of
the pure function /. These are the firm bases to
build the new cutting procedure, which will be used
for the CSHL, because the main aim of this procedure
is to establish the pure clusters covering all the labeled
patterns from the initial data set Ts.

4.3.1 A new cutting procedure - NCP

The difference between the new cutting procedure,
named NCP, proposed in this paper and the ARC
cutting procedure of [2], which was used for [1], is the
cutting criterion. For the ARC, the edge of ZHB to be
cut is the one parallel with the coordinate axis & such
that the distance between C; and C; along this
coordinate axis (3a) is maximum:

d;, =max(d;), i=l..n. (0)

For the NCP, the edge to be cut is the one parallel
with the coordinate axis & such that the two following
priorities are satisfied:

- The first: the value of the pure function (//k is
large. Quantity of this priority is expressed by the
large value of the penalty function 7 (5).

- The second: the edge to be cut is the one parallel
with the coordinate axis & such that distance between
C; and C; along this coordinate axis, d,, is large.

Consequently, the NCP cuts on the coordinate axis
k such that:

dek = max(r,-di), i=1l.n. (7)

The following example more clearly presents influ-
ence of distributive status on alternative and decision
of the ARC and the NCP.

Example (Fig. 2) The hybrid hyperbox hHB covers
three class labels as following:

o m=20; ¢ n,=20; * ny=12.

Consider the two class labels nh I (o) and nh 2 (o)
which are the most frequent ones with respect to the
whole number of the patterns covered by this ZHB.

Suppose that d), d, are given like that shown in Fig.
=0.05;6, =0.95;A =0.335 (5b).
If MC, is used then the HB; is the left part and the

HB; is the right part. If MC, is used then HB; is one
below, and HB; is the one above.

2. Given ¢

Fig 2(a): d,=3<d, =11

.
'l o 1 =20 i -
SE w 'l | nTH
- R
] * n3711 no. | of % -17
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Fig. 2. Cutting solutions: 4RC [1,2] and the new
cutting procedure- NCP.

L |t
m
v =

20 20

Wl =

|20 20

=7 =0.7;z’2 =0

:>T1d1 :0.7X3=2.1>T2d2 =0x11=0

Fig2(b): dy=5<d,=5.5

11 11
|t om0 19 o
m my| |20 20
2_|m~ _m°|_|16 5
V= |20 20

N {q = (' +A) = (0.95+0.335) =1.285
75 =1
71d, =1.285x5 = 6.425
{rzd2 =1x5.5=55
= nd) > 1,d,

Consequently, based on (6) and (7) we can infer that in
both of these cases, the ARC cutting procedure of [2]
chooses coordinate axis 2 (line 2-2) to cut; conversely,
the NCP chooses coordinate axis 1 (line 1-1) to cut, in
spite of d) <d, . Consider distributive status of
patterns shown in Fig. 2. We can see that cutting
operation in co-ordinate axis 1 is better because it
creates the HB; and the HB; having the pure degree of
distribution to be higher.

4.3.2 Algorithm CSHL
Let L, be set of the whole of pure hyperboxes
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created from the initial data pattern set Ty . Let L, be

set of the whole of hybrid hyperboxes created from
the initial data pattern set 75 . Let box number be the

number of hybrid hyperboxes belonging to the L,
The Hyperplane Clustering algorithm creates the
only hHB covering all the labeled patterns

belonging to the set, 7y. So the algorithm CSHL
begins with box number=1 (at this time, L,=,
Ly, ={hHB}).

- Delete HB, and HB,

(In this algorithm, delete a hyperbox HB means set up
the state of HB =O).

Step 1:

-If box _number =0 then go to Step 4.

- If box_number >0 then arrange hybrid hyper-
boxes hHB of the L, in order of the increasing
the number of patterns of each #HB;

Identify hHBy,: ,umper 5 GO to Step 2.

Step 2: Cut hHBy, ymper 0 two, HB; and HB:

- Find out the coordinate axis & satisfying (7). Use
(3b) to calculate «.

- Cutting operation on coordinate axis k based on
the following principle: consider all the input

patterns  Xx; =[x;xp..x,]  belonging to
hHByoy pumber *
o If xy <ajthen X, € HB;
o Else x; >a; then X, € HB,.
Step 3: Classify HB; and HB,:
- If one of the two HB; and HB, is pure then:

Store this pure hyperbox in L,;
Store this hybrid hyperbox in Lj;

Delete the hHBy,, mper»HBy,and HBy ;

Retain box_number and return to Step 1.
- If both HB, and HB, are pure: store both ones in

Ly. Delete the hHB,. ,umper-HBy, and HBy;

box _number = box number —1;
Return to step 1.

- If both HB, and HB, are hybrid: store both ones in
Ly Delete the hHBy,, ,umper»HBy, and HBy;

box _number =box number +1,
Return to Step 1.

Step 4: Test the**overlap condition ” to establish
fusion hyperboxes " (Sec. 3). Stop.

5. ALGORITHM HLM1

HLMI is an algorithm used to build neuro-fuzzy

network to approximate an unknown function
y= f(x) from a numerical pattern set 7y, in which
the algorithm CSHL (Sec. 4) is used to generate a set
of input pure hyperboxes. The Simpson’s method [9]
is also used to create the MFs (8). Besides, the
structure of the ANFIS network of [1] is also used.

5.1. Structure of the neuron-fuzzy network

Structure of the neuron-fuzzy network used for the
algorithm HLM]I is the same as structure of the
ANFIS network of [1] (Fig. 3(a)). However, here net’s
output y;, i=1..P is calculated by the Centre
method.

- To establish the fuzzy sets, we adopt the
Simpson’s MF [9]:

18
'upHBSk) (x;) :;Z[l_f(xij =@y, 7) =f (W — x5, 7)),
j=1

L, if xy>1
Jxy)y=qxy, if 0<xy<i (8)
0, if =xy<Q0,

where
r=1...R;; Ry is the number of pure hyperboxes

labeling %, and pHB,(k) denotes the rth pure hyper-
box among Ry pure hyperboxes labeling k;

a_)r = [a)rla)rz...w and Vr = [Vrlvrz...v

] are

rn ]
max and min vertexes of pHBﬁk ).

y is a parameter used to adjust the slope of MFs.
In this algorithm, we use the default value y =0.5.

- Several pHB can be associated with the same class
label £. In this case, the overall input MF Hi) (x),

i.e., the firing strength of the kth rule, k =1...A/, can
be determined based on the method proposed in [1]:

/Ugi(k) (X;) = max {ﬂpHng) (X)) ﬂpHB;kk) (fl.)} ©)

k=1.M,i=1.P.
- The output of the neuro-fuzzy network:
M p—
D g @y ()
P — k=l — , (@[=1.P) (10)
Zﬂgi w0 (%)
k=1

n
— k k
yki(xi)=Za§~ )xl-j +aé ), (11)
j=1
5.2. Algorithm HLM]1
Let M,,, and M, be the min number and max
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number of fuzzy rules used for training.

M =M

-1

Step 1: Establish a set of hyperplane-shaped
clusters and a labeled pattern set from the initial

training pattern set 7Ty : Mr=M+1;
Call the Hyperplane Clustering algorithm (Sec. 2).

Step 2: Build set L, of pure hyperboxes pHB
covering all the patterns belonging to the initial
training pattern set Ty :

Call the algorithm CSHL (Sec. 4).

Step 3: Establish the neuro-fuzzy network:
- Calculate values of MFs based on (8), (9);

- Calculate y; based on the use of (10), (11);
- Calculate the Mean Squared Error:

P
E=2 3 0i-5) (12)
i=1

Step 4: Test the Stop Criterion:
-If M <M, then return to Step 1.

-If M =M, ,then go to Step 5.

Step 5: Choose the optimal neuro-fuzzy network
based on priorities : £ <[E] and M small. Stop.

6. ALGORITHM HLM?2

Algorithm HLM?2 is used to build neuron-fuzzy
networks having the optimal input fuzzy set. In this
manner, the CSHL is used to establish set L, of

input pure hyperboxes consisting of the whole of the
patterns belonging to the initial training pattern set

Ty. Based on L, and the structure of the net shown

in Fig. 3(b), subsequently the neuron-fuzzy network is
built and trained to establish the optimal weight set
W, used to create the optimal input fuzzy set of
network. By this way, consequently, an adaptive
neuro-fuzzy inference system with higher degree of
the fit between particularity of the initial numerical

data set Ty and the created fuzzy set is established.

6.1. Structure of the neuron-fuzzy network

Structure of the neuron-fuzzy network used for this
algorithm is shown in Fig. 3(b) The input layer and
the output layer of this net is the same as the input
layer and the output layer of the net used for the
algorithm HLLM 1 shown in Fig. 3(a).

The difference between the two nets is hidden layer.
MFs of the algorithm HLM 2 uses the function Gauss,
in which centre location and width of each Gauss’s
graph depend on the two parameters 6,6,

i=1..M. So if we use M fuzzy rules, we will have

M
3ty (%) 76 (%)
=1

I
T Hy(R)
=]

G=1.5)

/1§§1) (f)

(b) HLM 2.
Fig. 3.The structure of neuron-fuzzy network.

2M parameters ¢; as a weight set W of net. The
optimal weight set, signed W, is the optimal value
set of W such that:

1
P

P
E==3%(y—3)> > min. (13)

i=1

W,, can be established by using algorithms for
training of neural networks well known. In this paper,
we use the algorithm Conjugate Gradient [10].

The MFs are proposed as following:

n 2

— z f:xl]—%ﬁkl (0);7 +V,]' ):|

=

2
o @=e 10 , (14)
where

r=1..R;; Ry is the number of pure hyperboxes

labeling &, and pHB® is the rth pure hyperbox
among R;, pure hyperboxes labeling &;

o, =[00,..0,,] and v, =[v,v,,.v,,] are
max and min vertexes of pHB").

- The firing strength of the kth rule, k=1...M, can

be determined based on (9).
- The output of the neuro-fuzzy network is
calculated by use of (10) and (11).

6.2. Algorithm HLM?2
Let M,;, and M, be the min number and max
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number of fuzzy rules used for training.
M=M_, -1

min
Step 1: Establish a set of hyperplane-shaped
clusters and a labeled pattern set from 75 :

M:=M+1.
Call the Hyperplane Clustering algorithm. (Sec. 2);

Step 2: Build set L, of pure hyperboxes pHB
covering all patterns belonging to the initial training
pattern set Ty :

Call the algorithm CSHL. (Sec. 4).

Step 3: Establish the neuron-fuzzy network with an
optimal input fuzzy set which is obtained by training
the network shown in Fig. 3(b) to create the optimal
weight set 7,

- The MFs are calculated by (14) and (9);

- The output of net p; calculated by (10), (11)

- Calculate the Mean Squared Error:

1& . 2
EZFZ(J’;")’;’) .
i=1

Step 4: Test the Stop Criterion:
-1t M <M, , then return to Step 1.

-If M =M, then go to Step 5.

Step 5: Choose the optimal neuro-fuzzy network
based on priorities : E <[E] and M small. Stop.

7. NUMERICAL EXPERIMENTS

7.1. Experiment 1

Let us consider the random pattern set named
tr_set] which consists of 15 random patterns given by
MATLAB with three inputs and a single output.

We use the method proposed in [1] and the two new
algorithms, HLM]I (with parameters of the vector (5b)
are £ =0.05, £ =095 A=035) and HLM? to
train the neuron-fuzzy networks to approximate
unknown function y = f(X) from the numerical data
set fr_setl. The result in the Table 1 shows the effect
of the two new algorithms.

7.2. Experiment 2
In this example we consider the following function

Table 1. Error (MSE) of algorithms.

Rules MSE

[1] HIM1 HLM?2
M=5 0,02760 0,0213 0,0246
M=6 0,02561 0,0107 7.1148.107
M=7 | 2,8576.10° 1,0199.107 7.3906.10°®
M=8 | 7,0300.10° 1,7844.107 8,6461.10°
M=9 | 56341.10° | 4,2997.107 1,1859. 107

function £2
algoritlun [1]

E=1.704.10"

/ WVA I

MI=30
function 2
algoritim HLM1

function £2
algorithm HI N2

Fig. 4. Error between each output of the data set
and of net, error;=y;—¥;, i=1..100.
MSE (E) of [1], HLMI and HLM?2 with 30

rules.
of [1]:
2= (=) BG-x)" +(5-x%)]
where x, x, are random values created by

MATLAB, 0<x, x, <10. We take 100 input-output

patterns as training set named #_set2.1 and another 80
input-output patterns as test set named #» set2.2

The tr_set2.1
We use tr_set2.1 as training set.
The parameter vector (5b) of HLMI is

[e1,6,A =[0.05, 0.95, 035].

- Fig. 4 shows ervor.=y, -3, i=1..100 and

the mean squared error MSE (E) of [1], HLMI and
HLM?2 with 30 rules (M=30). It shows a comparison
on performance of these training methods.

- Fig. 5 expresses outputs y; of the training set

tr_set2.1 and outputs p; of the net in two cases. In
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the first case (Fig. 5(a)), [1] is used to train the net,
and in the second case (Fig. 5(b)), HLM?2 is used to
train. Number of rules, M=20. Degree of the
difference between y; and p; shown in Fig. 5a is

higher than it shown in Fig. 5b. It means that accuracy
degree of HLM?2 is higher than [1].

- In this experiment, we also update the number of
input fuzzy clusters created by using each algorithm:
[1], HLMI or HLM? to compare each other. The
results show that complex degree of systems built by
HLMI and HLM? is lower than complex degree of
system built by [1].

Il

Fig. 5. Degree of the difference between y; and
y; of [1] (Fig. 5a) and HLM? (Fig. 5b)
with M=20.

Table 2. A comparison on errors (MSE).

The tr_set2.1 and the tr_ser2.2

- In this experiment we use 7 _set2.] as a training
set and tr_ser2.2 as a test set. The parameter vector of
HLM]I is used is

[e1,6,, AT =[0.05, 0.95, 0.35].

A comparison on Errors (MSE) among [1], HLMI
and HLM? with different number of rules is shown in
Table 2. In the two cases, we can see that if the
number of fuzzy rules M are equal, accuracy degree of
HLMI and of HLM? are higher than accuracy degree
of [1].

7.3. Experiment 3: Daily Stock price

In this experiment we use the daily data of a stock
market from [3] (“Daily Data of Stock A™) as training
pattern set. This data consists of ten input and one

Output ([xl 3 X500 X1 ], y) .
The parameter vector of HLM] is used is

[e1,6,,A1F =[0.05, 0.95, 0.5].

Here, we use three methods: [1], HLMI and HLM?2
to train the neuro-fuzzy networks to approximate this
pattern set. The error MSE (E) of three methods are
shown in Table 3. Fig. 6 shows error,=y; -3;,

i=1..100 and the mean squared error MSE (E) of
[1], HLMI and HLMZ2 with 12 rules. It shows a
comparison on performance of these training methods.

We also update the number of input fuzzy clusters
created by each algorithm: [1], HLMI or HLM?2 to
compare each other. The results show that complex
degree of systems built by the new algorithms is lower
than complex degree of system built by [1].

These results shows the effect of the two new
algorithms, HLM1I and HLM?2.

7.4. Experiment 4:
In this experiment we use function
y=a? 420, a3 €[LS]

of [4] to establish a training set of 50 patterns which is
the same as the training set used in [4]. The parameter
vector (5b) of HLM!1 is chosen for this example is:

L&y, £, AF =[0.05, 0.95, 0.5);

We use algorithms proposed in [1,4-6] and the two
new algorithms to approximate this training data set.

Table 3. MSE (E) of the three methods.

The Algorithms
number
The training set, 7 _ser2.1
=10 2.10° 1.7.10° 2.7693.10™
M=20 25.10" 1.4771.10* | 1.2326.10°
M=30 2.099.107° 1.704.10° | 1.6686.107°
The test set, r_ser2.2
M=10 7.15.107 6.341. 107 1.437.10°
M=20 9.505.10° 1.112.10° 8.878.10™
M=30 4.871.10" 3.412.10* | 2.866.10°

Algorithms
Rules
[1] HLM]1 HLM2
M=10 13,4148 0.5618 0,0675
M=12 1,74460 0,2070 0,0352
M=14 | 3,5028.10° ! 2,1013.10° | 1,2101.10°
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A

M=12

Set 100x10x1
algorithm {1]
Eiror=1.7446

M=12

seb 100x10x1
algoritinn HIMI1
E=0.2070

Al

M=12

Set 100x10x1
algorithm HI.M2
E=0.0352

el

Fig. 6. Error between each output of the data set and
of net, error;=y,—y;, i=1..100. MSE
(E) of [1], HLMI and HLM?2 with 12 rules.

Table 4. Comparison on errors MSE of algorithms
with different number of rules.

Algorithms
[4] [5] [6] [11 {HLMI| HLM?
M=6 |0.0589(0.0599|0.05720.0221| 0.0182 [1.9587.10*

Rules

M=8 |0.0500|0.0499(0.0499(0.0220| 0.0218 |1.8544.10™
M=100.0148{0.0149{0.0149|0.0188] 0,0026 [1.9780.10"

Comparison on errors MSE among these algorithms
with different number of rules shown in Table 4
denotes the effect of the HL M1 and the HLM?.

8. CONCLUSION

In this paper we describe a neuro-fuzzy system
modeling approach to approximate an unknown

function y = f(¥) from anumerical data set.

First of all, we present a new input data space
parting procedure, named NCP, which is based on a
pure function y and a penalty function z to direct

input data space parting process. The NCP is used to
build a new algorithm CSHL, which is used to create
input data clusters as input fuzzy sets. Two new
algorithms, HLMI and HLM?2, are proposed. They
uses the input fuzzy sets created by CSHL to
synthesize neuro-fuzzy networks, in which, HLM]I
directly synthesizes neuro-fuzzy network. The other,
HLM?2, uses the optimal weight set W, given by net
training process to build a neuro-fuzzy model. By this
way, consequently, an adaptive neuro-fuzzy inference
system with higher degree of the fit between
particularity of the initial numerical data set 7y and

the created fuzzy sets is built. We can see that, the use
of the pure function y and the penalty function r

increases degree of fit between characteristics of the
initial training data set given and the input fuzzy sets
established, reduces the number of pure hyperboxes
created, i.e., reduces the number of input fuzzy sets.
These remarks are inferred by theory and are verified
by results of a series of numerical experiments where
we use [1], some algorithms well known and the two
new algorithms to build neuro-fuzzy models, and then,
compare results of them. These experiments show that
accurate degree of HLMI and HLM? is higher than
accurate degree of these algorithms. Besides, complex
degree of system built by HLMI and HLM? is lower
than complex degree of system built by [1].
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