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Backstepping and Partial Asymptotic Stabilization:
Applications to Partial Attitude Control

Chaker Jammazi

Abstract: In this paper, the problem of partial asymptotic stabilization of nonlinear control
cascaded systems with integrators is considered. Unfortunately, many controllable control
systems present an anomaly, which is the non complete stabilization via continuous pure-state
feedback. This is due to Brockett necessary condition. In order to cope with this difficulty we
propose in this work the partial asymptotic stabilization. For a given motion of a dynamical
system, say X(£,Xg,0) = (W, yo,50), 2(t, 29,1y)), the partial stabilization is the qualitative
behavior of the y-component of the motion (i.e., the asymptotic stabilization of the motion with
respect to y) and the z-component converges, relative to the initial vector x(%y) = x5 = (¥g.2g)-
In this work we present new results for the adding integrators for partial asymptotic stabilization.
Two applications are given to illustrate our theoretical result. The first problem treated is the
partial attitude control of the rigid spacecraft with two controls. The second problem treated is
the partial orientation of the underactuated ship.
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1. INTRODUCTION

Control problems involving cascaded systems have
recently attracted considerable attention in the control
community. Mobile robots with steering wheels
(unicycle), the rigid spacecraft, the ship and the sub-
marine are examples of cascaded systems. Such
systerns have fewer actuators than the system degree
of freedom and this class is also an example of
underactuated systems. For such systems, the tools
from linear control theory are not sufficient, and
stabilization techniques need to be reconsidered, both
at the control objective level and the control design
techniques level. The stabilization problem of this
class of systems is widely studied and remains one of
the most challenging features as long as no special
structure is assumed for the system to be stabilized.

In the late eighties, works on the Brockett’s
necessary condition [3] underlined the fact that a
regular feedback may fail to stabilize regular systems.
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Based on this obstruction, a great effort has been
provided for the design of time-varying control laws,
[1,5,6,8,9,20,23,25,26,29,30], or discontinuous /dis-
continuous time-varying feedback laws [11,31]. In
order to overcome the limitation imposed by
Brockett’s necessary condition, the conception of
time-varying feedback laws is an important method
for solving the stabilization problem. Nevertheless,
the fact of introducing the time in these feedback laws
produces “undesirable” oscillations of the system
around of his equilibrium point, [1,5,20,23,25,26,29,
30]. In addition, and in many situations, the stabilizing
feedback laws are continuous in the equilibrium point,
however, they are not differentiable at this point. For
instance, we can see the stabilization method by
homogenous and average feedback laws [20,21,23,24].
This seems to be the major drawback.

To solve the stabilization problem of all
controllable systems that do not satisfy the Brockett’s
condition, and to overcome the drawback of the time-
varying-periodic feedback laws, we propose the
partial asymptotic stabilization method. The partial
asymptotic stabilization considered in this paper is the
stabilization with respect to the major components of
the system and the rest converges to some position
which depends on the initial conditions.

This theory is a natural extension of the classical
concept of stabilizability in Lyapunov sense. Stability
(respectively, stabilizability) with respect to part of the
state also called “partial stability (respectively, partial
stabilizability)” has been intensively studied within
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last 50 years. Basic results in this field belong to
Rumyantsev, [13,14,28,33], the founder of the theory
of partial stability for systems of ordinary differential
equations with continuous right side, and have
demonstrated the applicability of this result to
problems of stability of more general models of
distribute-parameter systems. Subsequently, a large
number of researchers have contributed to the
development of theory and methods for studying
partial stability and stabilization and resolved several
important problems; see, for instance, [33].

Our partial asymptotic stability (respectively,
stabilizability) definition is different from the
definitions given and used in [13,14,33,37] in which
the authors have been occupied with the part of the
system and suppose that the rest is bounded. The
definition used in this paper takes into consideration
the complete stability of the system, the asymptotic
stability with respect to part of the sate while the rest
converges to some position, which depends on the
initial conditions. The latter property is interesting
since it removes the possible oscillations of the
system. This partial asymptotic stability is applied in
many engineering fields as the stabilization problems
of rigid spacecraft with two controls, the ship [15], the
underwater vehicle [16] and the nonholonomic
systems. The aim of this paper is to extend the well
known backstepping theorem to the case of partial
stabilizability of nonlinear control systems. We have
shown that if the original system is partially
stabilizable then the cascade systems with integrators
inherit the same property. To this end, we have
developed the inversion Lyapunov theorem for the
partial asymptotic stabilizability. The theoretical result
is applied to solve two problems. The first is the
partial stabilization of the rigid spacecraft with two
controls, where we have improved Zuyev’s [37] result
that the velocity ®; of the third axes converges by

using smooth state feedback laws. The second
problem treated is the attitude of an underactuated
ship. We have constructed two smooth feedback laws
that stabilize asymptotically five components and the
sixth converges.

The paper is structured as follows: The next section
deals with some mathematical preliminaries. In
particular, the inversion of the Lyapunov theorem of
the partial asymptotic stabilizability is proved. The
backstepping techniques and partial stabilizability is
treated in Section 3. In Section 4, we give two
applications for the backstepping result. Numerical
simulations are given to validate our results. The
conclusion is presented in Section 5.

2. MATHEMATICAL PRELIMINARIES

In this section, the concept of partial asymptotic
stability and partial asymptotic stabilizability and

some of their results will be reviewed in order to build
the mathematical background for the stability proofs.

Let R denote the set of real numbers, R” denote
the set nx1 real column vectors, |.| denote the

r

Euclidean vector norm and is the symbol of

transposition.
X the Hahn space defined by a:[0,+)—[0,
+00), o continuous, strictly increasing and a(0) =0.
Consider the following system:

x1= [(,%), Xy = fo(x1,%2), Y]

f=hr) is
C*(R"), xeR?, x,eR"? and p integer such
that O<p<nm.
We assume that

where supposed to be class

£(0,x5)=0and £,(0,%)=0,x, cR"?.  (2)

Definition 1 (Partial asymptotic stability): The
system (1) is said to be partially asymptotically stable
if the following proprieties are satisfied:

a) The equilibrium 0eR” of (1) is Lyapunov
stable.

b) The system (1) is asymptotically stable with
respectto x; and x, converges:

lim X1 (t ) = 0,
I >0:(x0)|+]x0) <=1 3)
lim x,(¢)=a,
{—>+w©
where a is a constant vector depending on the initial
conditions.
Now, we consider the nonlinear finite-dimensional
control systems of the following form

5c1=f1(x1,x2,u), x2:f2(xl’x2’u)a 4

where x=(x,x,)e R’ xR" 7 is the state, and

u(t)e R™ is the control.

Definition 2 (Partial asymptotic stabilizability):
The system (4) is said to be partially asymptotic
stabilizable if there exists a continuous function
¢ RPxR"™P 5> R™,  $(0,x,)=0 such that the
system in the closed-loop:

%1= [0, %0,0(0, %)), %, = fo(x1,%2,8(x1,%2)), (5)

is partially asymptotically stable in the sense of
Definition 1.

Having introduced the concept of partial asymptotic
stabilizability, it is now possible to state some
important results of stability with respect to part.
Thanks to recent contribution of [19], we announce
the following proposition, which gives a converse
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Lyapunov theorem for the stabilization with respect to
part of variables. This result extends the Kurzweil’s
theorem [7,18]. This result is also due to Rumyantsev
and Oziraner cited in [38].

Proposition 1: If the system (4) is partially
asymptotically stabilizable, then there exists a
continuous feedback law u(x;,x,) such that

u(0,x,)=0 and a C' function V:RP xR"P
— R such that

1. V{(x,x,) is positive definite with respect to x;.

2. V(x,x,) is definite negative with respect to
X

Proof: Assuming that (4) is partially asymptotically
stabilizable in the sense of Definition 2, then there
exists a continuous feedback law u(x;,x,) such that
u(0,x,)=0 and the system (4) in closed loop is
partially asymptotically stable. Thus, the system is
asymptotically stable with respect to x and x,
converges. Then by a result due to Rumyantsev and
Oziraner [38], the system (4) admits a c! Lyapunov
function V positive definite with respect to x; such

that ¥ is negative definite with respect to x.

3. BACKSTEPPING AND PARTIAL
ASYMPTOTIC STABILIZABILITY

In this section, we give an extension of the
backstepping techniques of Coron-Praly [10] to partial
stabilizability theory.

Theorem 1: We suppose that

{xl - fi(xl,X2,u)
X2 = frlx,x,u)

is partially stabilizable by static state feedback of

C”, r > 1. Then the augmented cascaded systems with
integrators

(6)

iI = fi(xlsxzﬁy)
x2 = folx,x,») (N
y = u

is asymptotic stabilizable with respect to (x,») by
static stationary feedback of class C" .

Proof: We assume that the system (6) is partially
asymptotically stabilizable by state feedback of C”,
then from Definition 2 there exists a C° map
¢:RP xR"? 5> R", ¢(0,x,)=0, Vx, e R"? such
that, on closed-loop the system

%1 = 100, %0,8(x1, %)), %2 = f2(%,%5,8(x1, %)), (8)

is asymptotically stable with respectto x.

By using the Proposition 1, there exists a c!
Lyapunov function ¥ and three A -functions a;,a,

and a4 such that

oy ([ D=V (3,9) S 0q (g ), %)
and
V(xl ;%) = 03] X ) (10)

Let the following Lyapunov candidate function
1
W (1,500 =V () + Ly =g, x) o (1)

We derive W along the trajectory of system (7), we
obtain

W) =L e+ 2L fy)

ox, , ox, y (12)
+<y-¢<x>,u—ff;(w)—éx—f;(x,y».

Since feC"(R"xR™), then the components f
and f, are also (", by Taylor’s expansion we
obtain:
[ = £, 0(0)) + Gy (x, , 9Ny = (x)),
H(x,3) = fH(x,4(0)+ Gy (x, 3, 6Ny = §(x),

where G, is pxm and G, is (n—p)xm are

two matrix functions of C".
With the preliminary feedback

i) =22 hen+ P fy)
8x] 8)C2

et <x,y,¢<x»g~” (13)
Xy

~ oV
"GT sV, )__+¢( )ﬂ.’
2 (%) ¢(x)8x2 x)-y

we obtain V(x,y)e R" xR"”

W (xy) =V (x)- |y = $() (14
we use (10) and (14) we obtain:

W(x,3)=0< (x;,5)=(0,4(0,x,)) =(0,0).  (15)

Then W is a candidate Lyapunov function, we
conclude that by Risito-Rumyantsev theorem (see for
instance Vorotnikov [33]) that (x,¥)=(0,0) is
asymptotically stable.

Proposition 2: Considering the system (7). If there

exists continuous function y:R" — (0,+ ), strictly
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positive such that for each solution (x(7), (1)),
[ (x(0), y(0)) |<n, we get:

V()= 1y-p0F
HAEN <]y =90 P wix, ).
Then with the state feedback law
u(x,y) =u(x,y) = wlx, y)(y - ¢(x)), (a7
the system (7) is partially asymptotically stable in the
sense that (x;,y)=(0,0) is asymptotically stable and

the state x, converges.
Proof: Let the function T defined by

TGy =W+ | AeX)lds,  (18)

where W is the Lyapunov function introduced in (11).
It is clear that T is a positive function.
With the new feedback (17), the system (7) is

asymptotically stable with respectto (x;,y).

The derivation of T along the system (7) and with
the new feedback (17), we obtain:

T=V(x)-|y-@F -1y- ¢ F vx.y)
+| AP

From the assumption (16), we have

(19)

T<0.
Thus, T admits finite limits as 7 tends to -+, let be

im T(x,y,0)=T,.

{—>+00

Since T is continuous with respect to all variables and
admits a finite limits, then it is bounded. Consequently,
the function g defined by

g0)= [ 205,52, 7)(9) s (20)

is also bounded. Since g'(r)=|f;(x,x,,yX)[20
then we obtain the convergence .of the integral

Ew} Ja(x, %0, ¥)($) lds <+, Therefore, by the

Cauchy condition, we deduce the convergence of the
solution x,(¢) starting from the n neighborhood of
the origin of the system (7).

Remark 1: Let (xé)lSiSn_ p the components of

Xy, then:
%2 lleo <12 (0) [+ (x(0), ¥(0)), 2D

where |[x, |l,,:= sup{| x, |,1<i<n-—p}.
Indeed, with the assumption (16) and with the help of

(16)

the state feedback u(x,y) introduced in (17), the
function T is decreasing, then

T(t) =T (x(1), y(1),t) <T(0). 22)

Also, we have
1 A G0), 7 1ls <T@). 23)

The solution x, can be written as x,(#) =x,(0)+
fy f,(x(), ¥(s))ds, then

(1) [<1x20) [+ [ | £ (x(s), ¥(s)) . (24)
From (22), (23), and (24), we obtain

12 Il <15 (0) |+ (x(0), ¥(0)).
Let a= grfm x,(7), then by using the latter inequality,

we have
| alles <132 (0) |+ (x(0), ¥(0)). (25)

Definition 3: The system (1) is called partially

exponentially stable if

1. The system (1) is stable,

2. there exists r>0 such that, if |x(0)]
+]x,(0)|< r, then there exists two reals ¢>0
and k>0 such that
|0 1< c| (x(0),x,(0)| e,

3. there exists r>0 such that, if |x(0)]
+|x,(0)|<r , there exists a depending on
initial conditions such that

lim Xy (t) = a(x] (O), Xy (O))
{—>t0

Propeosition 3: Considering the control system (6).

Assuming that there exists wueC” satisfying
u(0,x,)=0 such that:

1. there exists #>0 such that, if |x(0)]
+1x,(0)|<r, then there exist two reals ¢>0

and k>0 suchthat

|3 (1)[<e] (5 (0) %, ()] ™,
0
2. in closed-loop the matrix Eii is bounded.
1

3. the function f, verifies |/f(x,x,u)|<
alx |+b|u| where a,b>0.

Then the extended system

X1 = fi(xl’x2sy)
y = w (26)
)'CZ = fZ(xlaxZay)
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is partially exponentially stabilizable by smooth
feedback laws of class C*7' in the following sense:
(x;,¥) is asymptotically stabilizable and x,
converges.

Proof: We assume that the Assumptions 1 and 2
hold, then by Lyapunov inversion Theorem (Khalil

[18], Theorem 4.14, p. 162), there exists a C”
Lyapunov function V' such that:

1. there exist a positive constants ¢ and ¢;
such that

alx P <Vix,x)<e|x N

2. there exists a positive constant ¢; >0 such

that
Vs-glxl, (28)
By using the assertions 1 and 2, it is easy to obtain
<S8y (29)
“

For the extended system (26), we consider the
Lyapunov function defined in (11):

W=V (i) + 5 |y~ 900 P,

with the action of the feedback control u(x,y)
defined by (13) we obtain the following equation

W=V-|y-¢x)F, (30)
we deduce from (27) and (28)

W < —min(=, Sy, G1)

2 (6]

which implies the exponential stabilizability of the
system (26) with respect to  (x;, ¥).
Therefore, there exists >0, u>0, and c¢>0
such that from | (x(0), ¥(0))|<r . It follows that

% (1) [+] 20 | ¢] (x(0), »(0)) [e M,
hence
|5 ()| y(@0) | < e| (x(0), y(0) [ . (32)
From the assumption 3, we deduce
| /o(epsxp,¥) [Salx [+b] y]
<c(a+b)|(x(0), y(0) e ™",

The inequality (33) shows that the vector field f, of
the augmented system (26) is Lebesgue integrable,
therefore the state x, converges to constant vector
depending on initial conditions.

Remark 2: 1. Let be x(f) a function defined on

(33)

[0,40), we assume that xeC'. If lim x(¢)=1
f~>+00

and lim x(©)=1" then [/'=0.

t—>+0
2. If the system (7) is partially asymptotically
stabilizable in the sense of Definition 2, then this does
not implies that the reduced system (6) is partially
asymptotically stabilizable in the sense of Definition 2.
Indeed, we consider the system [10]:
Let, foraconstant ¢ and n=>2 a function

FR"xR=R""xRxR—>R" defined by

fxy) =105 +x3)°

2,.3 2 3.2 (34)
=y =Ig [ y+x) )X,

where (x,y)=(x;,x%,¥) € R xRxR. Coron ef al.
[10] showed that for ¢ large enough, the system
%= f(x,u) is not locally asymptotically stabilizable
but the x=f(x,y), y=u is globally

asymptotically stabilizable. Consequently, the latter
system is partially asymptotically stabilizable.

system

We assume that x=(x,x)eR" xR, and the
system:
b= Al P )’ = Pl oo
t2=0n P +x) - @ -5 P+ 5) 1y

is partially asymptotically stabilizable in the sense of
definition 2. Then there exists a continuous feedback
u(x), such that #(0,x,)=0, and the system (35) in
closed loop is completely stable, asymptotically stable
with respect to x;,and x, converges.
Let a= lim x,(1).

t—>+oo
We have

t2=(x P +x3) =P u(x)’
—|x |2 u(x)+ x%)zsz.

Then lim x5(f) = a -ctd =d (1- cz), therefore for
t—>+w

¢ large enough ( ¢*>1) we have necessarily

a=90, ie, the system (34) is asymptotically

stabilizable, which is contradiction (remark 1).

In the following sections, we give two applications
of our theoretical results, the first one addressed to the
partial asymptotic stabilization of the rigid spacecraft
and the second is interested in the ship problem.

4. APPLICATIONS: PARTIAL ATTITUDE
CONTROL

4.1. Partial stabilization of rigid spacecraft with two
controls

The attitude control of rigid spacecraft with only two

controllers has been the subject of numerous research

articles in the literature. This type of system is used to



864 Chaker Jammazi

illustrate several aspects of nonlinear controllability.
Let us mention the results of Bonnard [2] and Crouch
[12] proving that the system is globally controllable in
large time, Kerai [17] proving that the system satisfies
Sussmann’s condition, and so is small time locally
controllable. The attitude stabilization is studied by
the work of Byrnes and Isidori [4] have shown that all
rigid satellite with (one or) two independent actuators
cannot be locally asymptotically stabilized using
continuously differentiable static or dynamic state
feedback. However stabilization about an attractor is
possible, inducing a closed loop system with trajec-
tories tending to a revolute motion about a principal
axis.

Also, the same problem is studied by Morin ef al.
[25] where the concept of time-varying feedback laws
stabilizing locally the system is explicitly derived by
using center manifold theory combined with
averaging techniques. Coron and Kerai established the
time-varying homogenous and periodic feedback laws
stabilizing the satellite with two controllers. The
method described by Morin et al. [24] that studied the
attitude of underactuated rigid spacecraft was locally,
exponential stabilized with respect to a given dilation.
The controllers was periodic, time-varying and non-
differentiable at the origin and the construction relied
on the proprieties of homogenous systems.

To get around the problem of impossibility to
stabilize many controllable systems by continuous
feedback laws, the strategies of asymptotic stabiliza-
tion by means of continuous time-varying feedback
laws has been proposed. Nevertheless, the fact to
introduce the time in these feedback laws can produce
“undesirable” oscillations of the system (see for
instance, Morin ef al. [22,25], [23,26,29,30]). In order
to overcome these difficulties, we present the partial
attitude control method.

Many alternative coordinate choices exist for the
description of the rotational motion of a rigid body.
Not all choices are equivalent with respect to their
domain of validity for accurate attitude representation
or the ease they offer in the control design process and
the final properties of the proposed control law.
Furthermore, the Fulerian angles, the Cayley-
Rodrigues parameters are examples of parameteriza-
tions of SO(3). Two dimensional parameterizations
introduce necessarily a singularity, as it is not possible
to find a globally diffeomorphic transformation
between SO(3) (which is compact) and the euclidian

space R (which is not). In this context we have
chosen the FEuler-Poisson parameterizations for
describing the rigid spacecraft [32,33,37]. In this case
we have shown that we can solve this problem by C~
continuous feedback controller functions only on the
state. This work improves Zuyev’s [37] result, and
proves that the velocity ®; converges.

Equation of motion: We consider the Euler-
Poisson parameterizations ([32,33,37]) which describe
the motion of the rigid-body, it is written in the
following form:

o1 = L}

@y = U

w3 = 0107 (36)
vy = @3V~ V3

vy = V3 -3V

vy = OV Vs

We will be interested in to stabilizing partially the
equilibrium ©, =0, =03 =0,v; =v, =0,v3=1. We
notice that v12 +v% +v§ =constant. Then we can

suppose that:

v%+v%+v§:1.

We choose the hemisphere v; >0, the equality v12

+v% +v§ =1 implies:

vy = \/1—(v12 +v3).

We consider the unit open ball B(0,1) and the

function o(vy,v,y)=4/1— (vl2 + v%).

6 is smooth on the open ball B(0,1), we develop ©

in the first order by Taylor’s formula in the
neighborhood of (0,0) we obtain:

o(vy,v2) =1+g(v,v2),
where the function g is smooth and satisfies
g(07 O) = g,(VI’VZ )(O> 0) =0.

To simplify the work we use the backstepping
theorem, then it is sufficient to study the reduced
system given by:

w3 = iy

vy = W3Vy i Vg (37)
vy = Uvz—WzV;

vy = WaVi—i vy

We replace v; by 1+ g(vy,v,) in the system (37),

we obtain:
w3 = Uy
‘}1 = —u2 — u2 g(Vl ,V2) + (D3V2 (38)
vo = w+u gV, V) — 03V
vy = Uy Vi —up vy,

In order to study the partial asymptotic stabilizability
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of the reduced system, we need the following theorem
Theorem 2 (Lyapunov-Malkin [36]): Consider the
system of differential equations:

X1
x2
where x eRP, x, e R" 7, 4 is a pxp -matrix,
and R(x,x), S(x,x;) represent higher order
nonlinear terms., If all eigenvalues of the matrix 4

have negative real parts, and, R(x,x,), S(x;,x,)
vanish when x =0,

Ax +R(x,%7)

39
S(x, %), (39)

il

then the solution x =0,
x =0 of this system is stable with respect to

(x,%,)", and asymptotically stable with respectto x;.

If (%(0),x,(0)) 1is small enough, then there is a

constant n-vector ¢ (depending on the initial
conditions) such that

lim x,(f) =0,

lim x,(f) =c.
—>+o0 >+

Proposition 4: Let o> 0, we choose the feedbacks
u; and u, with this manner:

2] =""(XV2 +V2 (,03, 142 =(XV1 ‘*VI (l)3~

Then:
1. the system (38) is completely stable,
2. the system (38) is exponentially stable with
respect to (vy,v,), the angular velocity s

converges to @ and the point v; converges
to 1.
Proof: In closed loop the system (38) can be
written in Lyapunov-Malkin form [36], to this end we
put the system (38) in the following form:

{»"Cl = AX]')'R(JC],)Q)

40
S(x, %), @

X2 =
where xlz(Vl,Vz), X2=(033,V3),

S(xy.1,) = (-avy + vy 3){av) — vy o3)
SV — V5 @3) ~ Vo (0 vy + vy 04) ’

vi{av,
) Vi -a 013
1 )
and
RGu.) :(vl 0y — (@ V) ~ vy 03) g(V),Vy) + Vs 0)3J
Vo 03 H(—0 V)4V, 03) g(Vy, Vo )V, 003

It is clair that the matrix

A=
0 -o
has —a <0 as eigenvalues. Besides the functions
R(x,x,) and S(x;,x,) having nonlinear terms and

vanishing
(0,0,0,0)".
The Lyapunov-Malkin Theorem allows us to conclude.

Remark 3: By using the Lyapunov-Malkin
theorem, we can obtain the same results of
Proposition 4 by linear feedback laws as follows
Uy =—0Vy, Uy = 0V, a>0.

together at  (0,0,v3,005)" and at

In the following proposition we give explicitly the

feedback controller that achieves the partial
asymptotic stabilization of the system (36).
Proposition 5: With feedback controllers
¢ (x) = k(o —(x)), 41
¢ (x) = —k(0y —uy (x)),

u(x) and wu,(x) are given in the Proposition 4,
k,a>0 and x={(w;,v;), i=123.

The system (36) is partlaliy asymptotically stable,
more precisely: (w,®,,V;,V,,v3) =(0,0,0,0,1)" is
asymptotically stable and ®; converges.

Proof: With the feedback laws given in (41), the
system (36) in closed loop is given by:

Wy = —k(i)lik(IV'l‘i"szCO?,
@y = —koy+tkavy—kvio;
T O
@3 102 (42)
A O O O gvi,vy)
yo = Qo8 V) - a3V
vy = Wy V) — W V3.
We can put the system (42) in the following form
[)Zjl = Axl +R(x1,x2) (43)
X'Z = S(x17x2),
where x; =(wy,m,,v1,V2), X =(03,V3),
-k 0 0 —ka
0 -k ka O
A= ,
0 -1 0 0
1 0
kV2 C\)g
—k vy o
R(XI,XZ> =

03V, 0, (v}, V)
—03v; + 0 g{v,Vy)

01 ®7
S(X} 3 X2 ) = ] .
(D’) Vl —Cl)l Vz‘

The matrix A has the following characteristic

polynomial P(r)=(r(k+r)+k a)2 which has two
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distinct roots 1 and 7.
For all signs of the quantity A= k? — 4k, the roots
n and r, have negative real parts. Indeed,

o If k* —4ka <0, then the solutions of P given
by the complex form are:

—k iy —k* + 4k
p o ENTE TARG g, (44)

/ 2

it is clear that the roots # and », are a negative real
parts.

o If k2 —4ka>0 , in this case the solutions of P are
given by the following expression:

—ktJk® —4ka | L
v, =, j=12.

i, 5 (45)

The constants k¥ and a are positive then, because
we have the following inequality k* —4ko<k?, the
roots 1 and r, are negative.

Therefore, the matrix A4 is Hurwitz. In addition, the
functions R and S do not contain a constant, or
linear terms and vanish together in the equilibrium
point (0,x,)". Thus, by Lyapunov-Malkin Theorem,
the system (42) is asymptotically stable with respect
to x;, stable with respect to (x;,x,)" and the vector
x, converges to constant vector depending on the

initial conditions; then the angular velocity s

converges.
The state v; satisfies the equality v12 +v% +v§ =1,
and because v3 >0,then lim v3(7)=1.
t—>+w
Remark 4: 1. The feedback laws given in (41) are

C” (RS, R).
2. In [37], Zuyev proposes the following feedback
laws:

1 |Al ‘42|
——VAVq —(—————— | ® +8A 0) 46
[] 2V3 ( ) X | 3| 1) 1 ( )

1 A — A
Uy = 03 _7V1V3 —(uzA—2|
b |

U = 003
|03 | +edy ), (47)

with £>0 an arbitrary real. With these feedbacks,
the system (36) is asymptotically stable with respect
to (®;,®,,v],v,) , and bounded with respect to

((D3 > VS) .
A particular attention is paid to the following points:
» Zuyev’s feedbacks are only continuous.
¢ No arguments permit us to say that the feedback
laws (46) and (47) ensure the convergence of the

state o, which can be oscillatory. Consequently,

these feedback laws do not answer the approach
of our partial asymptotic stabilization proposed
(Definition 2). On the other hand, our feedback
suggested in (41) achieves our objective of
partial asymptotic stabilization, and improves the
Zuyev’s result.

Numerical Simulations: The performances of our
feedback laws are tested by numerical simulations on
the nonlinear model of satellite. These simulations are
presented in Figs. 1, 2, and 3.

The, feedback laws applied to the system are:

¢ =-10(0 — 2 (x)),

$, =—10(0y — 1 (x)),

m = 10V2 + Vy®3,

Uy = 10\/1 — VI(D3‘

It is clear that these feedback laws make partially
asymptotically stable the system (36). The advantage
of this method resides in obtaining a static stabiliza-

tion. Moreover, the state variable, which is not
“controllable” converges, which makes it possible to

0.6

0.5

0.4

031

o2l °

0.1

_01 \ . . . . . . . .
‘o 0.5 1 15 2 25 3 3.5 4 45 5
time (s)

Fig. 1. Comportment of the velocities v,v;.

L I L L L 1 L '
0.5 1 15 2 2.5 3 3.5 4 45 5
tima(s)

Fig. 2. Comportment of the velocity v5.
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~2r,

e

Al L ! L . - I
o 05 1 15 2 25 3 35 4 45 5
time (s}

Fig. 3. Trajectories of the angular velocities ®;,®,
and ;.

avoid the oscillation of the system in the neighbor-
hood of the equilibrium point.

4.2. Partial stabilization of the ship

This subsection is devoted to study the
underactuated ship, it was shown by Pettersen and
Egeland {26] that no continuous or discontinuous
static-state feedback law exists which makes the
origin of the ship system asymptotically stable,
because the latter system does not satisfy Brockett’s
condition [3] and Coron and Rosier conditions [11].
Our treatment enables us to overcome the difficulties
imposed by the Brockett’s condition. The stabilization
problem for the underactuated ship is treated in the
sense of asymptotic partial stabilization.

One of the most difficult manoeuvres of the captain

of the ship is to put it on the quay. This operation can
be done by exerting forces on the engines in order to
put the ship in a side way on the quay.
In this work we will prove this mechanical operation
and we develop a smooth feedback control that
ensures the local “convergence” of the ship on the
quay.

w [Feave

Fig. 4. Inertial frame attached to the Sohip.

Equation of Motion: The ship (see Pettersen and
Nijmeijer) [27] can be modeled by the simplified one

. Moo dy
X1 = = X Xy e Xy b
my myy My
, my dy
X2 = - X3 ———X
My My
. myy = My ds3 1 (48)
x3 = WXIXZ “‘—X3 +——‘u2
33 33 33
0 = X COSY — X, SNy
¢3 = Xy SInY + Xy COSY
V'/ = X35

x,Xy,X%; are the velocities in surge, sway and yaw
respectively and 6,4,y denote the position and
orientation of the ship in the earth frame. u; and u,

.0y are

are the controls.
supposed to be strictly positive.

Since the system (48) does not check the Brockett’s
condition for stabilization by continuous, state and
stationary feedback laws. Stabilization is then treated
within the partial asymptotic stabilization sense.

Our objective consists in constructing two feedbacks

u; and u, which maintain the system (48) in the

The parameters m

following configuration: The partial state (xy,X,,x3,
0,y) is asymptotically stable, and ¢ converges.

To achieve this goal, the following section introduces
the change of coordinates necessary to the use of the
backstepping and partial stabilization techniques.

4.3, Feedback transformation and stability analysis
4.3.1 Feedback transformation

To obtain a simpler form of the system (48), we
adopt the following transformation:

m d, 1
Uy ::i,’(‘zlé -Lxl +

my my My (49)

My —
L VB> B W

M3 m33 M3

Uy . Us.

We suppose also that d,, =my, and M _eso ,
oY)
the system (48) takes the following form:

xl = iy

X2 T X3 X

X3 = L) (50)
6 = xcosy—xysiny
¢3 = X Siny + X,cosy

‘ l// = X3.
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The system (50) is presented in cascaded form. To
study the partial stabilizability of (50), we applied
Theorem 1 and it is sufficient to study the reduced
system of (50) where it’s given by the following form:

Xy = —CU U3 — Xy
6 = wcosy— x,sin
‘ 1 : Y — Xy Siny (51
¢ = wsiny + xycosy
l/} = uz.

4.3.2 Stability analysis

As the satellite case, the partial asymptotic
stabilization of the system (50) is done in two stages.
The first one consists in stabilizing partially the
reduced system. When the second is based on the
linearization results [18,35] to deduce the suitable
feedback laws for the stabilization of the augmented
system (50).

Step 1: Stabilization of the reduced system

Our principal objective is to determine C*
feedback laws such that the system (51) in closed loop
is partially asymptotically stable in the following
sense: the partial equilibrium (x,,0,y) =(0,0,0)" is
asymptotically stable, and the angle ¢ converges.

The following proposition gives these feedback
laws [15].

Proposition 6: Considering the following feedback
laws u and. u,

U = —k6 + XV, Uy = _k\ua (52)

where k>0, then, with the action of  and u,,
the equilibrium (x,,0,y) =(0,0,0)" of the system
(51) is asymptotically stable and ¢ converges.

Proof 1) Asymptotic stabilization of (x,,0,y)":

It is clear that, with the feedback u,, the state
is exponentially stable, and

v() = y(0)e ™. (53)
The equality (53) gives
cosy(t) ~1, if t— +oo, (54)

siny(t) ~y(t), if t— +oo. (55)

Then, for |y(0)| small and with (54), (55) the
dynamic of 0 becomes:

0 =u — X\ (56)

From our feedback 4 given in (52) and from (54),
the dynamic of 0 becomes

6 = —k9. (57)

Then 9 is exponentially stabilizable.
Considering the sub-system of (51) in closed loop

X2 = cky(=kB+x y)—x;
6 = (~k0+xyy)cosy—x, siny (58)
v o= —k .

The linearization of the system (58) in the equilibrium
point is given by:

=%y, 0=—k0, y=—ky. (59)

The system (59) is exponentially stable, then the
system (58) is also locally exponentially stable (see
[18,35]).

Then, there exist two reals » >0 and a>0 such
that

@) <7y e, (60)

where y = (x,(¢),0(¢), y(r)). Therefore, we have the
following inequalities

1O b8 L) | < 7| »(0) e

2) Convergence of ¢:
Since |siny|<|y|, then by triangular inequality
and simple calculation yields

GIREARIEAT
<r|y©)e™ (61)
Hh? | YO e 47 | y(O)F e

The inequality (61) shows that é is Lebesgue-
integrable and therefore ¢ converges.

Step 2: Partial asymptotic stabilization of (50)

The following proposition establishes the feedback
laws that ensure partial asymptotic stabilization of the
system (50).

Proposition 7: With the action of the following
feedback laws v; and v,

v =—(x —uy(x)), vy =—p(x; —uy(x)), (62)

where O<p<4k and the feedback w(x) and

uy(x) are given in (52).
Then the system (50) is asymptotically stable with
respect to (x,X,%3,0,¥) , and the state ¢
converges.

Proof: The proof is based on linearization theorems.

We take the system (49) in closed loop with our
feedback laws (62) it is written in the following form
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= —ux —kpl+
X2 = —Xy —CX| X3
i3 = —uxfkw (63)
6 = xjcosy—xysiny
¢3 = X SIny + X5 oSy
voo= X3.

The linearization of the system with respect to
(x3,%5,%3,0,¥) gives

X1 = —hx —kpb

x2 = —X

i3 0= ks —kpy (64)
6 = x

y = x3.

The states 0 and vy verify the second order
differential equations given by:

+ub+kpo=0, (65)
Vg +kpy=0. (66)

It is clear that the solutions of (65) and (66) are
exponentially stable because the polynom x? +ux
+kp =0 has two complex roots with negative real
parts (0 <p < 4k).

Thus, the linearized system (64) is exponentially
stable, then by the same argument as in step 1, the
system (63) is locally exponentially stable with
respect to (x;,%p,x3,0,¥) . Then, there exists ¢>0
and B>0 such that lx(t)lﬁc]x(0)|e'ﬁt, where
x(t) = (x1,%5,%3,0,y)". Consequently,

@] <c|x(0) e and [x(0)|<c|x(0)]e P’
Also, we have (ﬁle simy + x5 cosy, then |g(r)|<
| % ()| +] xy (t)}£2c]x(0)|e"ﬁf, which proves the
convergence of ¢.

4.4. Numerical simulations
For the simulation, we take the following feedback

v = =100 — 1 (x)), vy =—100x3 —u, (x)),
u =50+ xy, u, =-5y.

Figs. 5 and 6 show our results. According to
numerical simulations, it is clear that the state

(x,x7,%3) is asymptotically stable. When the axes
0 and wy of the orientation of the ship in the

terrestrial reference converge asymptotically to
equilibrium point 0, so on the other hand, the axe ¢

converges to a constant which depends on initial data.

0.4

x x %
S

0.2+

. . 1 s :
1 2 3 4 5 8 7 8 £l 10
time (s)

Fig. 5. Comportment of the velocities x;,x5,%3.

0sh o ‘ 1

e
0s \ :
03

02

0.1

0.4

L . L " . "
o Al 2 3 4 & 3 7 8 @ 1
time (s}

Fig. 6. Positions and orientations of the axes 6,¢,y .

4.5. Partial stabilization by linear feedback laws

In this subsection, we will prove that it is possible
to stabilize partially the system (48) by linear
feedback laws. To this end, by using the variables
changing proposed in [26], the authors showed that
the system (48) can be also written in the form:

21 = utzyr
iy = Ve

P (67)
u = i

Vo= -y -Gl

T Uy.

The state is given by x=(z},25,23,u,v,%)", 14 and
u, are the input.

Our objective is to construct two commands of class
C” such that the equilibrium (z;,z3,u,v,r) =
(0,0,0,0,0)" is asymptotically stable, and the state
z, converges.

Step 1: In a first stage, and in order to apply
theorem 1, we study the reduced system obtained
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from (67). This system is given by:

71 = U+ 251y
z2 = V=
(68)
z3 = U
Vo= —qV— Gy,

By making a change of feedback and by taking the
equivalence feedback

Zx_l:ul+22u2, Uy =Uy. (69)

The system (68) will be equivalent to the following
system

zZ1 = U
z3 = V= 21Uy
(70)
z3 = Uy
Vv = —qV—Clliy + czzzug.

We choose the feedback # and u, ofthe form
u(z)=-0z), uy(z)=-0z;, a>0. (7))

According to (71), in closed loop, the sub-system
described by (zj,z3,v)" 1is given by

i1 = -0z
vy = —qv- czoc2 Z123 + ¢y a? Z 232.

It is clear that the linearized system of (72) near the
equilibrium which is given by

z1=—02, z3=-023, V=—CV (73)

is exponentially stable, then the system (70) is locally
exponentially stable with respect to (z,z3,v)’, and

therefore, there exists y; >0 and vy, >0 such that

(21,23, V)0 | < 71 2(0) [ e, (74)
where z(t) =(z;,2,,23,V)"
From (70), we have

| 22D < (1) | +a] 21 (1) 3(0) |

<y112(0) | 2" +ay?| z(0) P e 272",

(75)
The inequality (75) implies that 7, is Lebesgue-

integrable, then the state z, converge.

Step 2: In this step, we propose the following
feedback laws

$(x) = - (u—u(x), $r(x) =~ (r —up(x)). (76)

The gains p; are chosen larger enough, #(x) and

uy(x) are givenin (71).
Feedback laws (76) yield
(0,0,0,0,0)' asymptotically stabilizable and the state

(z1,23,u,v,7) =

z5 converge.

Indeed, for the sub-system (72), we consider the
dilation

84 (21,23,v) = Oz, Az3,A%v),

we remark that (72) is homogeneous of degree zero
with respect to dilation 8)2”. Then thanks to theorem
of Morin et al. [23], the extended system (67) is
asymptotically stable with respect to (z,z3,u,v,7) .
This is obtained by feedbacks given in (76). We show
like in the satellite case, that the state z, converges

to a constant which is not necessarily null.
5. CONCLUSION

In this paper, we have developed the backstepping
and partial asymptotic stabilization techniques for
solving two partial attitude problems.

The treated examples relate to two dynamic
systems made up respectively of a satellite and a ship
which present the following properties:

» the two examples are underactuated systems

with two controls and six variables of state.

» they do not satisfy the Brockett’s necessary

condition for stabilization.

+ the two systems are in cascaded form with

integrators.

For the two systems, the results show that we have

stabilized asymptotically five variables of the state,
whereas only one converges to a constant value
depending on initial conditions. This partial asymp-
totic stabilization is obtained by indefinitely differen-
tiable feedback functions on the state only.
As we have seen during the synthesis of the paper, the
idea of construction of these feedback, is based on the
transformation of the initial system in a simple system.
This enabled us to establish an algorithm of partial
asymptotic  stabilization by the application of
Lyapunov techniques.

The results obtained for the satellite case improved
the work of Zuyev [37], and ensured the convergence
of angular velocity ®; of the satellite. Moreover, for

the example of the ship, our results confirm the
physical reality. Indeed it is known that during the
loading of the ship on the quay, the captain tries to put
it laterally. This explains the convergence of the state
¢ (position in Y direction), also our feedbacks

improved those obtained by Wichlund er al. [34]
which states that the yaw angle v is bounded (in our

work vy is asymptotically stabilizable).
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