References
- Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation, Numerische Mathematics, 31, 377-403
- Gu, C. and Ma, P. (2005). Generalized nonparametric mixed-effect models: Computation and smoothing parameter selection, Journal of Computational and Graphical Statistics, 14, 485-504 https://doi.org/10.1198/106186005X47651
- Hedeker, D. and Gibbons, R. D. (2006). Longitudinal Data Analysis, John Wiley & Sons, New York
- Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions, Journal of Mathematical Analysis and its Applications, 33, 82-95 https://doi.org/10.1016/0022-247X(71)90184-3
- Long, J. S. (1997). Regression models for categorical and limited dependent variables, Advanced Quantitative Techniques in the Social Sciences, 7, Sage Publications
- McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models (Monographs on Statistics and Applied Probability), Chapman & Hall/CRC, London
- Shim, J., Hong, D. H., Kim, D. H. and Hwang, C. (2007). Multinomial kernel logistic regression via bound optimization approach, Communications of the Korean Statistical Society, 14, 507-516 https://doi.org/10.5351/CKSS.2007.14.3.507
- Thall, P. F. and Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion, Biometrics, 46, 657-671 https://doi.org/10.2307/2532086
- Vapnik, V. N. (1995). The Nature of Statistical Learning Theory, Springer, New York
- Winkelmann, R. (2003). Econometric Analysis of Count Data, Springer Verlag, Berlin
- Wu, H. and Zhang, J. T. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches, John Wiley & Sons, New York
- Yuan, M. (2005). Automatic smoothing for Poisson regression, Communications in Statistics - Theory and Methods, 34, 603-617 https://doi.org/10.1081/STA-200052100