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The Ramp-Rate Constraint Effects on the Generators’ Equilibrium
Strategy in Electricity Markets

Manho Joung* and Jin-Ho Kim '

Abstract — In this paper, we investigate how generators’ ramp-rate constraints may influence their
equilibrium strategy formulation. In the market model proposed in this study, the generators’ ramp-rate
constraints are explicitly represented. In order to fully characterize the inter-temporal nature of the
ramp-rate constraints, a dynamic game model is presented. The subgame perfect Nash equilibrium is
adopted as the solution of the game and the backward induction procedure for the solution of the game
is designed in this paper. The inter-temporal nature of the ramp-rate constraints results in the Markov
property of the game, and we have found that the Markov property of the game significantly simplifies
the subgame perfect Nash equilibrium characterization. Finally, a simple electricity market numerical
illustration is presented for the successful application of the approach proposed.
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1. Introduction

Recently, the electricity industry has undergone
significant restructuring, and government-owned utilities
around the world have become privatized. As
restructuring and privatization continue, many studies
have been performed considering the unique
characteristics of electricity as well as electricity market
€Cconomics.

Among the many physical characteristics of electricity,
much research has been focused on the understanding of
the role of transmission networks in a deregulated
industry. Borenstein et al. have studied the competitive
effects of a transmission line that connects two electricity
markets [1]. They have shown that there may be no direct
relationship between the competitive effect of a
transmission line and the actual line flow. Moreover, with
a sufficiently large capacity line, the full benefits of
competition can be achieved even in cases where the
equilibrium line flow is zero. For a sufficiently large line
capacity, the market outcome is equivalent to the case
where the markets are merged; that is, where there is
unlimited capacity between the markets. Their works have
also included an empirical analysis of the California
electricity market modeled as a duopoly.
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Willems has studied a very similar market model to that
of Borenstein et al. and investigated the role of the
network operator for promoting competition among the
generators [2]. Quick and Carey have applied the
“dominant firm price-leadership model” to assess market
power in Colorado’s electricity industry and they have
demonstrated that strategies exist to reduce the market
power [3]. Leautier has studied regulatory contracts for
the operators of transmission networks and has proposed a
regulatory contract that induces network operators to
“optimally” expand the grid [4]. Stoft has investigated
market power issues when the generators serve a demand
with capacity constrained transmission lines [5]. He has
considered the effect on the market power of financial
transmission rights (FTRs) and the resulting distribution
of the congestion rent. Cho has investigated the
competitive equilibrium in electricity markets over a
network with finite capacity [6]. He has suggested a tool
to check whether an equilibrium is efficient. He has also
examined markets for firm transmission rights in a market
with a specific structure.

Considering the numerous studies carried out on the
transmission network constraints, the physical constraints
of generators have been less studied in the context of
markets. Baldick and Hogan have applied a supply
function equilibrium model to analyze electricity markets
with capacity constrained generators [7]. Arroyo and
Conejo have described a market clearing tool which
considers the minimum up and down time constraints of
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the generators [§].

One of the most important constraints that considerably
affect a generator’s economic production is the ramp- rate
constraint. Wang and Shahidehpour have proposed an
algorithm to solve unit commitment problems considering
the ramp-rate constraint in the vertically integrated
industry environment [9]. Lee et al. have presented a
price-based ramp-rate model [10]. However, they have
not considered the strategic interaction of the generators
within the market. Shrestha et al. have studied the
ramp-rate constraints in deregulated markets. Even though
they have addressed the strategic dispatch decision, they
have not considered the strategic interaction.

In this paper, therefore, a dynamic game model is
proposed in order to consider the strategic interaction of a
generator with the ramp-rate constraints. The solution of
the game is obtained based on the subgame perfect Nash
equilibrium concept [11]. Backward induction approach is
adopted for determining the subgame perfect Nash
equilibrium of the game. We have found that the
inter-temporal nature of the ramp-rate constraints yields
the Markov property of the game. By this, we can
conclude in this paper that the Markov property of the
game significantly reduces the complexity of the subgame
perfect Nash equilibrium characterization. As an
illustration for the approach proposed, a simple numerical
example is presented.

This paper is organized as follows. Section II describes
the electricity market model with explicit representation
of the ramp rate constraints. In Section III, a dynamic
game model is presented and the market equilibrium is
analyzed. Section IV presents a simple numerical
illustration of the approach. Finally, the conclusion is
provided in Section V.

2. Electricity Market Model

In this paper, we have considered a series of electricity
spot markets of which time index is denoted by

re {1’2"”’T}. There are N generators in the market and

the production cost function G:R, >R

ie{l2,--,N}

+of generator-i,

where , is of a quadratic form:
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where i is generator-i’s production, and and

»Ci are parameters. Demand in the market at time-7 is
assumed to be characterized by an inverse-demand
function denoted by P, : R.— R. and is represented by an

affine curve with a negative slope:

Pla)=-aq+pr , where a,, B € R+ )

where ¢ is transaction quantity in the market. Let g;o
denote the initial production quantity of generator-i. Let
also Agq;, and Ag,s denote generator-i’s ramp-up-rate and
ramp-down-rate for the interval between two consecutive
time indices, respectively. Then, generator -i’s ramp-rate
constraints can be written as:

G i1 ~Mig S4;0 S0 g + M V1€ {1205T )

where 0 is generator-i’s production quantity at time-7.

3. Market Equilibrium Analysis

3.1 Game Model

In the electricity market modeled in Section I,
generators compete against each other by choosing their
production  quantities (Cournot assumption). The
generator ramp-rate constraints described in (3) are
inter-temporal constraints in nature and, therefore, we can
apply a dynamic game theory in order to fully
characterize a generator’s strategic interaction in the
market. Figure 1 shows the extensive form representation
of the dynamic game for the electricity market considered
in this paper.

t=N

Fig. 1. Extensive form for the electricity market

In this game model, there is a static game embedded in
the whole dynamic game at each time-7. That is, at each ¢,
generators compete against each other to serve demand at
that time by ‘simultaneously’ choosing their production
quantities.
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One of the popular solution concepts in dynamic game
theory is the subgame perfect Nash equilibrium. In this
paper, the market equilibrium is defined by the subgame
perfect Nash equilibrium. In order for every subgame

characterization, we have denoted [l by the

generator-I’s payoff function during all the subgames
from time-f to 7

T T

M, =7, =Y (P@q,.-C,.)
o=t =t 4)

7
where ' denotes generator-i’s profit from the spot
market at time-z.

3.2 Equilibrium Analysis

One way to easily characterize a subgame perfect Nash
equilibrium is the backward induction and the backward
induction has been applied for equilibrium analysis in this
paper. The first step of the approach is analyzing the last
node subgames at time-T.

At time-T, generator-i’s subgame payoff function is its

7; .
profit ~“7  at time-T and the profit can be defined as:

N
T = —arij-,r +Pr Gir *Ci(%,r)
a )
In (5), the first term is the revenue of the generator-/
and the second term is the cost of the generator-i. Due to
the ramp-rate constraint, the possible production choice
97 s restricted according to generator-i’s production

quentity 771 at the previous time-(7-1). More

generally, the ramp-rate constraint of generator-i at time-¢
can be expressed as:

q,, Sqi, 59, tef12-.T} (6)

where 9, :ma){()’qf”"l _Aqid) , g,, =min(g;, 4, +Aq,,) , and

9: i the maximum generation of generator-i.
Due to the ramp-rate constraint, there are three cases

.. BR
for characterizing the best response 77 of generator-i for

. . 7T, . P
the subgame at time-7. Since ~ »" is a concave function
On, r

and %7 isan increasing function with respect to air ,

BR
the best response 77 can be expressed as:
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The third row of (7) can be derived by the first-order
necessary condition for optimality:

Om;

iz

N
= Z‘J pr+ Br—ardir —agir —b; =0
J=l (8)

Therefore, the Nash equilibrium strategy profile
Nash - l Nash |, qNu.th )
ar dir > 4NT ] for the spot market at time-T can

be determined by simultaneously solving (7) for all
generators. Moreover, the Nash equilibrium payoff profile

I—INasir :I-HNqsh HN,ashJ N .
r b NI for the subgame at time-T can

also be obtained using the determined equilibrium
Nash

strategy profile ar In this point, an important

Nash
observation is that the equilibrium strategy profile qr

for the subgame at time-T would be a function of the

production quantity profile 971 =larasdvral at the
previous time-(7-1). This holds, in general, for the
subgame from time-r to 7. That is, the equilibrium

Nash
strategy profile 4 for the subgame from time-f to T

would be a function of the production guantity profile
9-1= quH S ’HJ at time-(z-1).

This explicitly shows the nature of the inter-temporal
dynamics of the ramp-rate constraints. Since the ramp-rate
constraints restrict a generator’s production quantities at
only two consecutive times, the subgame equilibrium has

the Markov property. That is, the subgame equilibrium
Nash

strategy profile 91 is only dependent on the previous

production profile 91 | but not on the production

profiles before time-(s-1), 91-"9-2  Therefore, the
Markov property of the game dynamics significantly
reduces the complexity of characterization of the subgame

perfect Nash equilibrium. That is, the subgame perfect

Nash
Nash equilibrium strategy profile at time-/, 4
represented as:

, can be

0" gy q,0) =" (g, ©
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Suppose that we have the solution for the subgame
from time-¢ to 7. Then, the subgame equilibrium strategy

Nash
-profile 91 can be obtained by simultaneously
solving:
Vie{l, N},
Nash Nash ash
4.1 =argmaxIl, (qL =157 i " q[\]\;,j—l )
9, -1 (1 0)
1. =7 +H (qNa:h,”.’qNash) .
where T TR TR ¥t ). Since we have

determined the equilibrium for the subgame at time-T, by

using the backward induction procedure in (10), the

Nash
subgame perfect Nash equilibrium strategy profile q

can be obtained as:

Nash Nash Nash h ash
q :I_(ql,las ""’ql,]qs )’""(qll\lvizls ""9q11\\lf,T )J (11)

The subgame perfect equilibrium path can also be
obtained by determining the actual equilibrium outputs
sequentially from the initial production profile

90 :lql,Oﬂ"'sqN,O_l'

4. Numerical Illustration

In order for an illustration, a simple market model is
considered. There are two generators with the same cost
function:

1
Ci(qi)zzqiz +q;, i=12

(12)
The ramp rates for two generators are:
Aqlu = Aqld = 0.1,
Agq,, =Ag,,; =0.05. (13)

The considered time horizon is set to 2, that is,
e {1’2} . The inverse demand functions are:
])l (q) = _2q + 43
P2(q)=_q+2' (14)

The initial production quantity profile is
Following the backward induction procedures, first
consider the subgame at ¢ = 2. The equilibrium strategies
for the subgame are determined as:

q,=[0.25, 0.25]

Nash

1.3-q55
3

Nash

0.7-q;3
3

9 -0.1, if q., >

Nask ,
G, =14, +0.1, if q,<
_ Nash

2,2 .
= otherwise

(15)
1.15—g%"
3
O.SS—ql]’Vf}'
3

q2,1—0.05, if Gy >

Nash _

922 9, +0.05, if g1, <

Nash

1“]1,2
3

, otherwise

(16)

From (15) and (16), the equilibrium strategy profile for
the subgame can be obtained as: '

gV =[0.25,0.25] (17

The equilibrium payoff profile for the subgame can also
be determined as:

2% = [0.0938,0.0938] (18)

Now, consider the subgame from 7 =1 to ¢t = 2. The
payoff profile for this subgame is:

1, =[H1,1’ I1,,

=[m, +0.0938, 7, +0.0938] (19)

By finding Nash equilibrium for this subgame
considering the initial production quantity profile, the
subgame perfect Nash equilibrium strategy profile can be
obtained as:

qNash - [( qu’\;ash’ qlzjzgsh), ( q;\j;zsh’ qé\’/;sh ):| (20)
=[(0.35,025), (0.3, 0.25)]

5. Conclusions

This paper proposed a game theoretic approach for
studying the strategic interaction of generators in the
deregulated electricity markets considering their ramp-
rate constraints. In this paper, a dynamic game model has
been proposed in order to consider the strategic
interaction of the generators with their ramp-rate
constraints. The subgame perfect Nash equilibrium has
been adopted as the solution of the game. Furthermore,
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backward induction approach has been applied to
determining the subgame perfect Nash equilibrium of the
game. Since the inter-temporal nature of the ramp- rate
constraints yields the Markov property of the game, we
have concluded that the Markov property of the game
significantly reduces the complexity of the subgame
perfect Nash equilibrium characterization.
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