Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells

렌티바이러스와 아데노바이러스를 통하여 쥐의 중간엽줄기세포에 사람 나트륨/옥소 공동수송체 유전자를 전달하였을 때의 발현성능 비교

  • Park, So-Yeon (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Sung-Jin (Department of Microbiology, University of Ulsan College of Medicine) ;
  • Lee, Won-Woo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Heui-Ran (Department of Microbiology, University of Ulsan College of Medicine) ;
  • Kim, Hyun-Joo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Chung, June-Key (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Sang-Eun (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 박소연 (서울대학교 의과대학 핵의학교실) ;
  • 김성진 (울산대학교 의과대학 미생물학교실) ;
  • 이원우 (서울대학교 의과대학 핵의학교실) ;
  • 이희란 (울산대학교 의과대학 미생물학교실) ;
  • 김현주 (서울대학교 의과대학 핵의학교실) ;
  • 정준기 (서울대학교 의과대학 핵의학교실) ;
  • 김상은 (서울대학교 의과대학 핵의학교실)
  • Published : 2008.10.31

Abstract

Purpose: Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirus-mediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Materials and Methods: Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was $19.1{\pm}4.7%$, $54.0{\pm}6.4%$, $85.7{\pm}8.7%$, and $98.4{\pm}1.3%$ at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and 1-125 uptake. Results: Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro 1-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC ($29,704{\pm}6,659\; picomole/10^6\;cells$) was greater than that in adeno-hNIS-rMSC at MOI 100 ($6,168{\pm}2,134\;picomole/10^6\;cells$). Conclusion: Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression.

목적: 줄기 세포에서 렌티바이러스와 아데노바이러스를 이용해 유전자를 전달하였을 때 유전자 발현 정도를 정량적으로 비교하는 연구는 보고되지 않았다. 저자들은 쥐의 중간엽줄기세포(이하 rMSC)에 사람 나트륨/옥소 공동수송체 (이하 hNIS) 유전자를 렌티바이러스와 아데노바이러스를 통하여 전달하고 발현 정도를 정량적으로 비교해 보았다. 대상 및 방법: hNIS를 발현하는 rMSE (lenti-hNIS-rMSC)의 생산은 hNIS유전자를 렌티바이러스 벡터인 pLenti/UbC/V5-DEST (Invitrogen)에 클로닝하여 pLenti-hNIS를 얻은 후 rMSC에 감염시켜서 3주간 blasticidin으로 선별하였다. hNIS를 발현하는 재조합 아데노바이러스(Rad-hNIS)는 homologous recombination 방법에 의하여 생산하였으며 Rad-hNIS의 rMSC에 대한 transduction efficiency는 Rad-GFP를 사용하여 MOI 1, 5, 20, 고리고 100에서 평가하였고 그 결과는 각각 $19.1{\pm}4.7%$, $54.0{\pm}6.4%$, $85.7{\pm}8.7%$, 그리고 $98.4{\pm}1.3%$이었다. 두 바이러스 전달 시스템에서 hNIS의 발현정도를 ummunocytochemistry, western blot 그리고 방사성옥소 섭취실험을 통해 평가하였다. 결과: Immunocytochemistry와 western blot으로 hNIS 단백질의 양을 비교하였을 때 lenti-hNIS-rMSC에서 발현하는 hNIS 단백질의 양은 Rad-hNIS를 rMSC에 MOI 20으로 감염시킨 경우보다는 많았으나 MOI 50 보다는 작았다. 그러나 방사성옥소 섭취실험에서 lenti-hNIS-rMSC ($29,704{\pm}6,659\;picomole/10^6\;cells$)는 MOI 100의 Rad-hNIS를 rMSE에 감염시킨 경우($6,168{\pm}2,134\;picomole/10^6\;cells)$ 보다도 높은 섭취율을 보였다. 결론: 렌티바이러스를 통하여 hNIS를 rMSC에서 발현하도록 했을 때 아데노바이러스를 전달 벡터로 사용한 경우에 비하여 단백질 발현 양은 상대적으로 적었으나 hNIS의 기능은 더 우수하였다. hNIS를 리포터 유전자로 사용한 줄기세포추적은 벡터에 따른 유전자 발현효율의 차이를 고려하고 시행되어야 할 것으로 생각한다.

Keywords

References

  1. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/ multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 2007;25: 2896-902 https://doi.org/10.1634/stemcells.2007-0637
  2. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003;107:2134-9 https://doi.org/10.1161/01.CIR.0000062649.63838.C9
  3. Kang WJ, Kang HJ, Kim HS, Chung JK, Lee MC, Lee DS. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 2006;47:1295-301
  4. Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996;379:458-60 https://doi.org/10.1038/379458a0
  5. De La Vieja A, Dohan O, Levy O, Carrasco N. Molecular analysis of the sodium/iodide symporter: impact on thyroid and extrathyroid pathophysiology. Physiol Rev 2000;80:1083-105 https://doi.org/10.1152/physrev.2000.80.3.1083
  6. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43:1188-200
  7. Lee WW, Moon DH, Park SY, Jin J, Kim SJ, Lee H. Imaging of adenovirus-mediated expression of human sodium iodide symporter gene by 99mTcO4 scintigraphy in mice. Nucl Med Biol 2004;31:31-40 https://doi.org/10.1016/S0969-8051(03)00100-8
  8. Yang HS, Lee H, Kim SJ, Lee WW, Yang YJ, Moon DH et al. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats. Eur J Nucl Med Mol Imaging 2004;31:1304-11
  9. Shah K, Jacobs A, Breakefield XO, Weissleder R. Molecular imaging of gene therapy for cancer. Gene Ther 2004;11:1175-87 https://doi.org/10.1038/sj.gt.3302278
  10. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272:263-7 https://doi.org/10.1126/science.272.5259.263
  11. Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 2002;13: 243-60 https://doi.org/10.1089/10430340252769770
  12. Russell WC. Update on adenovirus and its vectors. J Gen Virol 2000;81:2573-604 https://doi.org/10.1099/0022-1317-81-11-2573
  13. St George JA. Gene therapy progress and prospects: adenoviral vectors. Gene Ther 2003;10:1135-41 https://doi.org/10.1038/sj.gt.3302071
  14. Lundstrom K. Latest development in viral vectors for gene therapy. Trends Biotechnol 2003;21:117-22 https://doi.org/10.1016/S0167-7799(02)00042-2
  15. Weiss SJ, Philp NJ, Grollman EF. Iodide transport in a continuous line of cultured cells from rat thyroid. Endocrinology 1984;114:1090-8 https://doi.org/10.1210/endo-114-4-1090
  16. Lee WW, Lee B, Kim SJ, Jin J, Moon DH, Lee H. Kinetics of iodide uptake and efflux in various human thyroid cancer cells by expressing sodium iodide symporter gene via a recombinant adenovirus. Oncol Rep 2003;10:845-9
  17. Mueckler M, Makepeace C. Transmembrane segment 6 of the Glut1 glucose transporter is an outer helix and contains amino acid side-chains essential for transport activity. J Biol Chem 2008;283:11550-5 https://doi.org/10.1074/jbc.M708896200
  18. Paire A, Bernier-Valentin F, Selmi-Ruby S, Rousset B. Characterization of the rat thyroid iodide transporter using anti-peptide antibodies. Relationship between its expression and activity. J Biol Chem 1997;272:18245-9 https://doi.org/10.1074/jbc.272.29.18245
  19. Levy O, De la Vieja A, Ginter CS, Riedel C, Dai G, Carrasco N. N-linked glycosylation of the thyroid Na+/I- symporter (NIS). Implications for its secondary structure model. J Biol Chem 1998;273:22657-63 https://doi.org/10.1074/jbc.273.35.22657
  20. Schorpp M, Jager R, Schellander K, Schenkel J, Wagner EF, Weiher H et al. The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res 1996;24:1787-8 https://doi.org/10.1093/nar/24.9.1787
  21. Loser P, Jennings GS, Strauss M, Sandig V. Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J Virol 1998;72:180-90
  22. Kim YH, Lee DS, Kang JH, Lee YJ, Chung JK, Roh JK et al. Reversing the silencing of reporter sodium/iodide symporter transgene for stem cell tracking. J Nucl Med 2005;46:305-11
  23. Gill DR, Smyth SE, Goddard CA, Pringle IA, Higgins CF, Colledge WH et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Ther 2001;8:1539-46 https://doi.org/10.1038/sj.gt.3301561
  24. Kim HJ, Jeon YH, Kang JH, Lee YJ, Kim KI, Chung HK et al. In Vivo Long-Term Imaging and Radioiodine Therapy by Sodium-Iodide Symporter Gene Expression Using a Lentiviral System Containing Ubiquitin C Promoter. Cancer Biol Ther 2007;6:1130-1135 https://doi.org/10.4161/cbt.6.7.4342