DOI QR코드

DOI QR Code

Bioactive Cyclic Dipeptides from a Marine Sponge-Associated Bacterium, Psychrobacter sp.

  • Li, Huayue (College of Pharmacy, Pusan National University) ;
  • Lee, Byung-Cheol (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Tae-Sung (School of Life Sciences and Biotechnology, Korea University) ;
  • Bae, Kyung-Sook (Korea Research Institute of Bioscience and Biotechnology) ;
  • Hong, Jong-Ki (College of Pharmacy, Kyung Hee University) ;
  • Choi, Sang-Ho (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Bao, Baoquan (College of Pharmacy, Pusan National University) ;
  • Jung, Jee-Hyung (College of Pharmacy, Pusan National University)
  • Published : 2008.12.31

Abstract

A bacterial strain with good antibacterial activities against Staphylococus aureus and Escherichia coli was isolated from a marine sponge Stelleta sp., and it was identified as a Psychrobacter sp. by comparative 16S rDNA sequence analysis. In our search for bioactive secondary metabolites from this psychrophillic and halotolerent bacterium, sixteen cyclic dipeptides (1-16) were isolated and their structures were identified on the basis of NMR analysis. In the test of the compounds for the protective effect against Vibrio vulnificusinduced cytotoxicity in human intestinal epithelial cells, cyclo-(L-Pro-L-Phe) (5) exhibited significant protective effect. Compounds 2, 6, and 11, which contain D-amino acid, were first isolated from bacteria.

Keywords

References

  1. Barrow, C. J. and Sun, H. H. (1994). Spiroquinazoline, a novel substance P inhibitor with a new carbon skeleton, isolated from Aspergillus flavipes. J. Nat. Prod. 57, 471-476 https://doi.org/10.1021/np50106a005
  2. Bowman, J. P., Cavanagh, J., Austin, J. J. and Sanderson, K. (1996). Novel Psychrobacter species from Antarctic ornithogenic soils. Int. J. Syst. Bacteriol. 46, 841-848 https://doi.org/10.1099/00207713-46-4-841
  3. Bruckner, H., Becker, D. and Lupke, M. (1993). Chirality of amino acids of microorganisms used in food biotechnology. Chirality 5, 385-392 https://doi.org/10.1002/chir.530050521
  4. Bruckner, H., Haasmann, S., Langer, M., Westhauser, T., Wittner, R. and Godel, H. (1994). Liquid-chromatographic determination of D-amino and L-amino acids by derivatization with o-phthaldialdehyde and chiral thiols. J. Chromatogr. A 666, 259-273 https://doi.org/10.1016/0021-9673(94)80388-9
  5. Davies, D. B. and Khaled, M. A. (1976). Conformations of peptides in solution by nuclear magnetic resonance spectroscopy. Part II. Homoallylic coupling in cyclic dipeptides. J. Chem. Soc. Perkin Trans. 2, 187-196 https://doi.org/10.1039/p29760000187
  6. Denner, E. B. M., Mark, B., Busse, H. J., Turkiewicz, M. and Lubitz, W. (2001). Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease. Syst. Appl. Microbiol. 24, 44-53 https://doi.org/10.1078/0723-2020-00006
  7. Fdhila, F., Vázquez, V., Sanchez, J. L. and Riguera, R. (2003). DD-Diketopiperazines: antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus. J. Nat. Prod. 66, 1299-1301 https://doi.org/10.1021/np030233e
  8. Gruenewald, S., Mootz, H. D., Stehmeier, P. and Stachelhaus, T. (2004). In vivo production of artificial nonribosomal peptide products in the heterologous host Escherichia coli. Appl. Environ. Microb. 70, 3282-3291 https://doi.org/10.1128/AEM.70.6.3282-3291.2004
  9. Hamase, K., Takagi, S., Morikawa, A., Konno, R., Niwa, A. and K. Zaitsu. (2006). Presence and origin of large amounts of Dproline in the urine of mutant mice lacking D-amino acid oxidase activity. Anal. Bioanal. Chem. 386, 705-711 https://doi.org/10.1007/s00216-006-0594-z
  10. Hentschel, U., Usher, K. M. and Taylor, M. W. (2006). Marine sponges as microbial fermenters. FEMS. Microbial. Ecol. 55, 167-177 https://doi.org/10.1111/j.1574-6941.2005.00046.x
  11. Heuchert, A., Glöckner, F. O., Amann, R. and Fischer, U. (2004). Psychrobacter nivimaris sp. nov., a heterotrophic bacterium attached to organic particles isolated from the south Atlantic (Antarctica). Syst. Appl. Microbiol. 27, 399-406 https://doi.org/10.1078/0723202041438455
  12. Holden, M., Swift, S. and Williams, P. (2000). New signal molecules on the quorum-sensing block. Trends Microbiol. 8, 101-103 https://doi.org/10.1016/S0966-842X(00)01718-2
  13. Houston, D. R., Synstad, B., Eijsink, V. G. H., Stark, M. J. R., Eggleston, I. M. and Aalten, D. M. F. (2004). Structure-based exploration of cyclic dipeptide chitinase inhibitors. J. Med. Chem. 47, 5713-5720 https://doi.org/10.1021/jm049940a
  14. Jayatilake, G. S., Thornton, M. P., Leonard, A. C., Grimwade, J. E. and Baker, B. J. (1996). Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J. Nat. Prod. 59, 293-296 https://doi.org/10.1021/np960095b
  15. Jorgensen, N. O. G. and Middelboe, M. (2006). Occurrence and bacterial cycling of D amino acid isomers in an estuarine environment. Biogeochemistry 81, 77-94 https://doi.org/10.1007/s10533-006-9031-9
  16. Kanoh, K., Kohno, S., Katada, J., Takahashi, J., Uno, I. and Hayashi, Y. (1999). Synthesis and biological activities of phenylahistin derivatives. Bioorgan. Med. Chem. 7, 1451-1457 https://doi.org/10.1016/S0968-0896(99)00059-0
  17. Kim, S. B., Falconer, C., Williams, E. and Goodfellow, M. (1998). Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int. J. Syst. Bacteriol. 48, 59-68 https://doi.org/10.1099/00207713-48-1-59
  18. Kwon, O. S., Park, S. H., Yun, B. S., Pyun, Y. R. and Kim, C. J. (2001). Cyclo(D-Pro-L-Val), a specific $\^{a}$-glucosidase inhibitor produced by Aspergillus sp. F70609. J. Antibiot. 54, 179-181 https://doi.org/10.7164/antibiotics.54.179
  19. Lautru, S., Gondry, M., Genet, R. and Pernodet, J. L. (2002). The albonoursin gene cluster of S. noursei: biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases. Chem. Biol. 9, 1355-1364 https://doi.org/10.1016/S1074-5521(02)00285-5
  20. Lee, B. C., Lee, J. H., Kim, M. W., Kim, B. S., Oh, M. H., Kim, K. S., Kim, T. S. and Choi, S. H. (2008). Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect. Immun. 76, 1509-1517 https://doi.org/10.1128/IAI.01503-07
  21. Lee, C. and Bada, J. L. (1977). Dissolved amino acids in the equatorial Pacific, the Sargasso Sea, and Biscayne Bay. Limnol. Oceanogr. 22, 502-510 https://doi.org/10.4319/lo.1977.22.3.0502
  22. Lee, J. H., Rhee, J. E., Park, U., Ju, H. M., Lee, B. C., Kim, T. S., Jeong, H. S. and Choi, S. H. (2007). Identification and functional analysis of Vibrio vulnificus SmcR, a novel global regulator. J. Microbiol. Biotechnol. 17, 325-334
  23. Lehrer, R. I., Rosenman, M., Harwig, S. S. S. L., Jackson, R. and Eisenhauer, P. (1991). Ultrasensitive assays for endogenous antimicrobial activity. J. Immunol. Methods 137, 167-173 https://doi.org/10.1016/0022-1759(91)90021-7
  24. Li, X., Bobretsov, S., Xu, Y., Xiao, X., Hung, O. S. and Qian, P. Y. (2006). Antifouling diketopiperazines produced by a deepsea bacterium, Streptomyces fungicidicus. Biofouling 22, 201-208 https://doi.org/10.1080/08927010600780771
  25. Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L. and Miao, X. (2007). 16SrRNA clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World J. Microbiol. Biotechnol. 23, 1265-1272 https://doi.org/10.1007/s11274-007-9359-x
  26. Li, Z., Yan, X., Xu, J., Chen, H. and Lin, W. (2005). Hymeniacidon perleve associated bioactive bacterium Pseudomonas sp. NJ6-3-1. Appl. Biochem. Micro. 41, 29-33 https://doi.org/10.1007/s10438-005-0006-8
  27. Martins, M. B. and Carvalho, I. (2007). Diketopiperazines: biological activity and synthesis. Tetrahedron 63, 9923-9932 https://doi.org/10.1016/j.tet.2007.04.105
  28. Mitova, M., Tommonaro, G., Hentschel, U., Mueller, W. E. G. and Rosa, S. D. (2004). Exocellular cyclic dipeptides from a Ruegeria strain associated with cell cultures of Suberites domuncula. Mar. Biotechnol. 6, 95-103 https://doi.org/10.1007/s10126-003-0018-4
  29. Mitova, M., Tutino, M. L., Infusini, G., Marino, G. and Rosa, S. D. (2005). Exocellular peptides from Antarctic psychrophile Pseudoalteromonas haloplanktis. Mar. Biotechnol. 7, 523-531 https://doi.org/10.1007/s10126-004-5098-2
  30. Nagata, Y., Fujiwara, T., Kawaguchi-Nagata, K., Fukumori, Y. and Yamanaka, T. (1998). Occurrence of peptidyl D-amino acids in soluble fractions of several eubacteria, archaea and eukaryotes. Biochim. Biophys. Acta. 1379, 76-82 https://doi.org/10.1016/S0304-4165(97)00084-6
  31. Nicholson, B., Lloyd, G. K., Miller, B. R., Palladino, M. A., Kiso, Y., Hayashi, Y. and Neuteboom, S. T. C. (2006). NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anti-Cancer Drug 17, 25-31 https://doi.org/10.1097/01.cad.0000182745.01612.8a
  32. Park, N. Y., Lee, J. H., Kim, M. W., Jeong, H. G., Lee, B. C., Kim, T. S. and Choi, S. H. (2006). Identification of the Vibrio vulnificus wbpP gene and evaluation of its role in virulence. Infect. Immun. 74, 721-728 https://doi.org/10.1128/IAI.74.1.721-728.2006
  33. Piel, J. (2004). Metabolites from symbiotic bacteria. Nat. Prod. Rep. 21, 519-538 https://doi.org/10.1039/b310175b
  34. Rudi, A. and Kashman, Y. (1994). Amino acid derivatives from the marine sponge Jaspis digonoxea. J. Nat. Prod. 57, 829-832 https://doi.org/10.1021/np50108a023
  35. Sanz-Cervera, J. F., Stocking, E. M., Usui, T., Osada, H. and Williams, R. M. (2000). Synthesis and evaluation of microtubule assembly inhibition and cytotoxicity of prenylated derivatives of cyclo-L-Trp-L-Pro. Bioorgan. Med. Chem. 8, 2407-2415 https://doi.org/10.1016/S0968-0896(00)00171-1
  36. Schmitz, F. J., Vanderah, D. J., Hollenbeak, K. H., Enwall, C. E. L., Gopichand, Y., SenGupta, P. K., Hossain, M. B. and Helm, D. (1983). Metabolites from the marine sponge Tedania ignis. A new atisanediol and several known diketopiperazines. J. Org. Chem. 48, 3941-3945 https://doi.org/10.1021/jo00170a011
  37. Schultz, A. W., Oh, D. C., Carney, J. R., Williamson, R. T., Udwary, D. W., Jensen, P. R., Gould, S. J., Fenical, W. and Moore, B. S. (2008). Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J. Am. Chem. Soc. 130, 4507-4516 https://doi.org/10.1021/ja711188x
  38. Shigemori, H., Tenma, M., Shimazaki, K. and Kobayashi, J. (1998). Three new metabolites from the marine yeast Aureobasidium pullulans. J. Nat. Prod. 61, 696-698 https://doi.org/10.1021/np980011u
  39. Sioud, S., Karray-Rebai, I., Aouissaoui, H., Aigle, B., Bejar, S. and Mellouli, L. (2007). Targeted gene disruption of the cyclo (L-Phe, L-Pro) biosynthetic pathway in Streptomyces sp. US24 strain. J. Biomed. Biotechnol. 2007, 1-9 https://doi.org/10.1155/2007/91409
  40. Song, M. K., Hwang, I. K., Rosenthal, M. J., Harris, D. M., Yamaguchi, D. T., Yip, I. and Go, V. L. W. (2003). Anti-hyperglycemic activity of zinc plus cyclo(His-Pro) in genetically diabetic goto-kakizaki and aged rats. Exp. Biol. Med. 228, 1338-1345 https://doi.org/10.1177/153537020322801112
  41. Stark, T. and Hofmann, T. (2005). Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J. Agric. Food Chem. 53, 7222-7231 https://doi.org/10.1021/jf051313m
  42. Strom, K., Sjoegren, J., Broberg, A. and Schnuerer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microb. 68, 4322-4327 https://doi.org/10.1128/AEM.68.9.4322-4327.2002
  43. Strom, M. and Paranjpye, R. N. (2000). Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect. 2, 177-188 https://doi.org/10.1016/S1286-4579(00)00270-7
  44. Tullberg, M., Grotli, M. and Luthman, K. (2006). Efficient synthesis of 2,5-diketopiperazines using microwave assisted heating. Tetrahedron 62, 7484-7491 https://doi.org/10.1016/j.tet.2006.05.010
  45. Yan, P. S., Song, Y., Sakuno, E., Nakajima, H., Nakagawa, H. and Kimiko, Y. (2004). Cyclo-(L-leucyl-L-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus. Appl. Environ. Microb. 70, 7466-7473 https://doi.org/10.1128/AEM.70.12.7466-7473.2004
  46. Yoon, J. H., Lee, C. H., Yeo, S. H. and Oh, T. K. (2005). Psychrobacter aquimaris sp. nov. and Psychrobacter namhaensis sp. nov., isolated from sea water of the South Sea in Korea. Int. J. Syst. Evol. Microbiol. 55, 1007-1013 https://doi.org/10.1099/ijs.0.63464-0

Cited by

  1. Indole oligomers from a marine sponge-associated bacterium Psychrobacter sp. vol.38, pp.4, 2010, https://doi.org/10.1016/j.bse.2010.06.008
  2. X-Ray Crystallographic Structure of the Cyclic Di-amino Acid Peptide: N,N′-Diacetyl-cyclo(Gly-Gly) vol.41, pp.9, 2011, https://doi.org/10.1007/s10870-011-0097-4
  3. Bile acid derivatives from a sponge-associated bacterium Psychrobacter sp. vol.32, pp.6, 2009, https://doi.org/10.1007/s12272-009-1607-1
  4. Cyclo(d-Tyr-d-Phe): a new antibacterial, anticancer, and antioxidant cyclic dipeptide fromBacillussp. N strain associated with a rhabditid entomopathogenic nematode vol.20, pp.3, 2014, https://doi.org/10.1002/psc.2594
  5. 2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products vol.112, pp.7, 2012, https://doi.org/10.1021/cr200398y
  6. Alkaloids and Nucleoside Derivatives from a Fungal Endophyte of Huperzia serrata vol.49, pp.1, 2013, https://doi.org/10.1007/s10600-013-0553-9
  7. Culture independent characterization of bacteria associated with the mucus of the coral Acropora digitifera from the Gulf of Mannar vol.27, pp.6, 2011, https://doi.org/10.1007/s11274-010-0591-4
  8. Diketopiperazines from two strains of South China Sea sponge-associated microorganisms vol.38, pp.5, 2010, https://doi.org/10.1016/j.bse.2010.10.002
  9. Solid-Phase Synthesis of Phenylalanine Containing Peptides Using a Traceless Triazene Linker vol.77, pp.21, 2012, https://doi.org/10.1021/jo301630h
  10. Paenibacillin A, a new 2(1H)-pyrazinone ring-containing natural product from the endophytic bacteriumPaenibacillussp. Xy-2 vol.30, pp.2, 2016, https://doi.org/10.1080/14786419.2015.1041941
  11. sp. G278 pp.1478-6427, 2019, https://doi.org/10.1080/14786419.2018.1468331
  12. Elucidation of Antifungal Metabolites Produced by Pseudomonas aurantiaca IB5-10 with Broad-Spectrum Antifungal Activity vol.22, pp.3, 2008, https://doi.org/10.4014/jmb.1106.06042
  13. AhaP, A Quorum Quenching Acylase from Psychrobacter sp. M9-54-1 That Attenuates Pseudomonas aeruginosa and Vibrio coralliilyticus Virulence vol.19, pp.1, 2008, https://doi.org/10.3390/md19010016
  14. Structural elucidation and antimicrobial activity of a diketopiperazine isolated from a Bacillus sp. associated with the marine sponge Spongia officinalis vol.35, pp.14, 2008, https://doi.org/10.1080/14786419.2019.1672684
  15. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold vol.11, pp.10, 2008, https://doi.org/10.3390/biom11101515