DOI QR코드

DOI QR Code

Study of Retention in Micellar Liquid Chromatography on a C18 Column on the Basis of Linear Solvation Energy Relationships

  • Tian, Minglei (Center for Advanced Bioseparation Technology, Department of Chemical Engineering, Inha University) ;
  • Row, Kyung-Ho (Center for Advanced Bioseparation Technology, Department of Chemical Engineering, Inha University)
  • Published : 2008.05.20

Abstract

In this study, 8 solutes (aniline, caffeine, p-cresol, ethyl benzene, methylparaben, phenol, pyridine, and toluene) have been tested in terms of linear solvation energy relationships (LSER). Several micellar liquid chromatography (MLC) systems using cationic surfactant cetyltrimethylammonium bromide (CTAB) and a mixture of water with (methanol, n-propanol, and n-butanol) modifiers were characterized using the LSER solvation parameter model. The effects of the surfactant and modifier concentration on the retention in MLC were discussed. LSER model had demonstrated high potential to predict retention factors with high squared correlation coefficients ($r^2$ > 0.99). A comparison of predicted and experimental retention factors suggests that LSER formalism is able to reproduce adequately the experimental retention factors of the solutes studied in the different experimental conditions investigated. This model is a helpful tool to understand the solute-surfactant interactions and evaluate the retention characteristic of micellar liquid chromatography.

Keywords

References

  1. Armstrong, D. W.; Henry, S. J. J. Liq. Chromatogr. 1980, 3, 657 https://doi.org/10.1080/01483918008060181
  2. Armstrong, D. W.; Nome, F. Anal. Chem. 1981, 53, 1662 https://doi.org/10.1021/ac00234a026
  3. Esteve-Romero, J.; Carda-Broch, S.; Gil-Agusti, M.; Capella-Peiro, M. E.; Bose, D. TRAC-Trends in Anal. Chem. 2005, 24(2), 75 https://doi.org/10.1016/j.trac.2004.11.003
  4. Hernández, M. J. M.; Alvarez-coque, M. C. G. The Analyst 1992, 117(55), 831 https://doi.org/10.1039/an9921700831
  5. Basova, E. M.; Ivanov, V. M.; Shpigun, O. A. Russ. Chem. Rev. 1999, 68, 983 https://doi.org/10.1070/RC1999v068n12ABEH000530
  6. Berthod, A.; Garcia-Alvarez-Coque, C. Micellar Liquid Chromatography, 1st ed.; CRC: 2000
  7. Marina, M. L.; García, M. A. Micellar Liquid Chromatography; Academic Press Ltd: England, 2000
  8. Poole, C. F. The Essence of Chromatography, 1st ed.; Elsevier Science: 2000
  9. Kamlet, M. J.; Taft, R. W. J. Am. Chem. Soc. 1976, 98, 377 https://doi.org/10.1021/ja00418a009
  10. Kamlet, M. J.; Taft, R. W. J. Am. Chem. Soc. 1976, 98, 2886 https://doi.org/10.1021/ja00426a036
  11. Kamlet, M. J.; Abboud, J. L.; Taft, R. W. J. Am. Chem. Soc. 1977, 99, 6027 https://doi.org/10.1021/ja00460a031
  12. Kamlet, M. J.; Abboud, J. L.; Taft, R. W. J. Org. Chem. 1983, 48, 2877 https://doi.org/10.1021/jo00165a018
  13. Kamlet, M. J.; Doherty, R. M.; Abraham, M. H.; Marcus, Y.; Taft, R. W. J. Phys. Chem. 1988, 92, 5244 https://doi.org/10.1021/j100329a035
  14. Chen, N.; Zhang, Y.; Terabe, S.; Nakagawa, T. J. Chromatogr. A 1994, 678, 327 https://doi.org/10.1016/0021-9673(94)80480-X
  15. Yang, S.; Khaledi, M. G. Anal. Chem. 1995, 67, 499
  16. Carr, P. W.; Doherty, R. M.; Kamlet, M. J.; Taft, R. W.; Malender, W.; Horvath, Cs. Anal. Chem. 1986, 58, 2674 https://doi.org/10.1021/ac00126a021
  17. Carr, P. W. Microchem. J. 1993, 48, 4 https://doi.org/10.1006/mchj.1993.1066
  18. Abraham, M. H.; Whiting, G. S.; Doherty, R. M.; Shuely, W. J. J. Chem. Soc., Perkin Trans. 1990, 2, 1451
  19. Abraham, M. H.; Chadha, H. S.; Whiting, G. S.; Mitchell, R. C. J. Pharm. Sci. 1994, 83, 1085 https://doi.org/10.1002/jps.2600830806
  20. McGowan, J. C.; Abraham, M. H. Chromatographia 1987, 23, 243 https://doi.org/10.1007/BF02311772
  21. Smith, T. J.; Stevenson, K. J. J. Am. Chem. Soc. 2003, 125, 3669 https://doi.org/10.1021/ja025326h

Cited by

  1. Use of linear solvation energy relationships for chromatographic retention of seven solutes in different mobile phases vol.7, pp.4, 2012, https://doi.org/10.1002/apj.596