DOI QR코드

DOI QR Code

Docking Study of Biflavonoids, Allosteric Inhibitors of Protein Tyrosine Phosphatase 1B

  • Lee, Jee-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jung, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Woo, Eun-Rhan (College of Pharmacy, Chosun University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2008.08.20

Abstract

Protein tyrosine phosphatase (PTP) 1B is the superfamily of PTPs and a negative regulator of multiple receptor tyrosine kinases (RTKs). Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as a strategy for the treatment of type 2 diabetes and obesity. Recently, it has been reported that amentoflavone, a biflavonoid extracted from Selaginella tamariscina, inhibited PTP1B. In the present study, docking model between amentoflavone and PTP1B was determined using automated docking study. Based on this docking model and the interactions between the known inhibitors and PTP1B, we determined multiple pharmacophore maps which consisted of five features, two hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. Using receptor-oriented pharmacophore-based in silico screening, we searched the biflavonoid database including 40 naturally occurring biflavonoids. From these results, it can be proposed that two biflavonoids, sumaflavone and tetrahydroamentoflavone can be potent allosteric inhibitors, and the linkage at 5',8''-position of two flavones and a hydroxyl group at 4'-position are the critical factors for their allosteric inhibition. This study will be helpful to understand the mechanism of allosteric inhibition of PTP1B by biflavonoids and give insights to develop potent inhibitors of PTP1B.

Keywords

References

  1. Ostman, A.; Böhmer, F. Trends Cell. Biol. 2001, 11, 258 https://doi.org/10.1016/S0962-8924(01)01990-0
  2. Li, S.; Depetris, R. S.; Barford, D.; Chernoff, J.; Hubbard, S. R. Structure 2005, 13, 1643 https://doi.org/10.1016/j.str.2005.07.019
  3. Dixit, M.; Tripathi, B. K.; Tamrakar, A. K.; Srivastava, A. K.; Kumar, B.; Goel, A. Bioorg. Med. Chem. 2001, 15, 727
  4. Yi, T.; Lindner, D. Curr. Onco. Report 2008, 10, 114 https://doi.org/10.1007/s11912-008-0019-6
  5. Dube, N.; Cheng, A.; Tremblay, M. L. PNAS 2004, 101, 1834 https://doi.org/10.1073/pnas.0304242101
  6. Lyon, M. A.; Ducruet, A. P.; Wipf, P.; Lazo, J. S. Nat. Rev. 2002, 1, 961 https://doi.org/10.1038/nrd963
  7. Wiesmann, C.; Barr, K. J.; Kung, J.; Zhu, J.; Erlanson, D. A.; Shen, W.; Fahr, B. J.; Zhong, M.; Taylor, L.; Randal, M.; McDowell, R. S.; Hansen, S. K. Nat. Struc. Mol. Biol. 2004, 11, 730 https://doi.org/10.1038/nsmb803
  8. Na, M.; Kim, K. A.; Oh, H.; Kim, O. Y.; Oh, W. K.; Ahn, J. S. Biol. Pharm. Bull. 2007, 30, 379 https://doi.org/10.1248/bpb.30.379
  9. Chen, J.; Chang, H. W.; Kim, H. P.; Park, H. Bioorg. Med. Chem. Lett. 2006, 16, 2373 https://doi.org/10.1016/j.bmcl.2006.01.117
  10. Kim, H. P.; Park, H.; Son, K. H.; Chang, H. W.; Kang, S. S. Arch. Pharm. Res. 2008, 31, 265 https://doi.org/10.1007/s12272-001-1151-3
  11. Lin, Y.; Flavin, M. T.; Cassidy, C. S.; Mar, A.; Chen, F. Bioorg. Med. Chem. Lett. 2001, 11, 2101 https://doi.org/10.1016/S0960-894X(01)00382-1
  12. Blazso, G.; Gabor, M.; Rohdewald, P. Pharmazie. 1997, 52, 380
  13. Ursini, F.; Rapuzzi, I.; Toniolo, R.; Tubaro, F.; Bontempelli, G. Methods Enzymol. 2001, 335, 338 https://doi.org/10.1016/S0076-6879(01)35256-4
  14. Woo, E. R.; Lee, J. Y.; Chom, I. J.; Kim, S. G.; Kang, K. W. Pharmaco. Res. 2005, 51, 539 https://doi.org/10.1016/j.phrs.2005.02.002
  15. Pan, X.; Tan, N.; Zeng, G.; Zhang, Y.; Jia, R. Bioorg. Med. Chem. 2005, 13, 5819 https://doi.org/10.1016/j.bmc.2005.05.071
  16. Paul, D. K.; Rob, B.; Scott, K.; Marvin, W.; Venkatachalam, C. M. J. of Comp. Chem. 2001, 22, 993 https://doi.org/10.1002/jcc.1060
  17. Hoffrén, A. M.; Murray, C. M.; Hoffmann, R. D. Curr. Pharm. Des. 2001, 7, 547
  18. Luke, S. F.; Osman, F. G. J. Braz. Chem. Soc. 2002, 13, 777 https://doi.org/10.1590/S0103-50532002000600008
  19. Pickett, S. D.; Mason, J. S.; McLay, I. M. J. Chem. Inf. Comput. Sci. 1996, 36, 1214 https://doi.org/10.1021/ci960039g
  20. Lee, J. Y.; Baek, S.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 379 https://doi.org/10.5012/bkcs.2007.28.3.379
  21. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Computational Chemistry 1998, 19, 1639 https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  22. Lee, J. Y.; Lee, S. A.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 941 https://doi.org/10.5012/bkcs.2007.28.6.941
  23. Yang, S. F.; Chu, S. C.; Liu, S. J.; Chen, Y. C.; Chang, Y. Z.; Hsieh, Y. S. J. Ethnopharmaco 2007, 110, 483 https://doi.org/10.1016/j.jep.2006.10.010
  24. Gil, R. R.; Lin, L.; Cordell, G. A.; Kumar, M. R.; Ramesh, M.; Reddy, B. M.; Mohan, G. K.; Rao, A. V. N. A. Phytochem 1995, 39, 405 https://doi.org/10.1016/0031-9422(94)00842-H
  25. Selvam, C.; Sanjay, M. J. J. Ethnopharmaco 2004, 95, 209 https://doi.org/10.1016/j.jep.2004.07.026
  26. Li, X.; Hoshi, A. S.; Tan, B.; ElSohly, H. N.; Walker, L. A.; Zjawiony, J. K.; Ferreira, D. Tetrahedron 2002, 58, 8709 https://doi.org/10.1016/S0040-4020(02)01096-7
  27. Bekker, R.; Ferreira, D.; Swart, K. J.; Brandt, E. V. Tetrahedron 2000, 56, 5297 https://doi.org/10.1016/S0040-4020(00)00443-9
  28. Hyun, S. K.; Kang, S. S.; Son, K. H.; Chung, H. Y.; Choi, J. S. Chem. Pharm. Bull. 2005, 53, 1200 https://doi.org/10.1248/cpb.53.1200
  29. Yamaguchi, L. F.; Vassao, D. G.; Kato, M. J.; Mascio, P. D. Phytochem. 2005, 66, 2238 https://doi.org/10.1016/j.phytochem.2004.11.014
  30. Das, B.; Mahender, G.; Rao, Y. K.; Prabhakar, A.; Jagadeesh, B. Chem. Pharm. Bull. 2005, 53, 135 https://doi.org/10.1248/cpb.53.135
  31. Kumar, N.; Singh, B.; Bhandarim, P.; Gupta, A. P.; Uniyal, S. K.; Kaul, V. K. Phytochem. 2005, 66, 2740 https://doi.org/10.1016/j.phytochem.2005.10.002
  32. Choi, S. K.; Oh, H. M.; Lee, S. K.; Jeong, D. G.; Ryu, S. E.; Son, K. H.; Han, D. C.; Sung, N. D.; Baek, N. I.; Kown, B. M. Nat. Product. Res. 2006, 20, 341 https://doi.org/10.1080/14786410500463312
  33. Lee, C. W.; Choi, H. J.; Kim, H. S.; Kim, D. H.; Chang, I. S.; Moon, H. T.; Lee, S. Y.; Oh, W. K.; Woo, E. R. Bioorg. Med. Chem. 2008, 16, 732 https://doi.org/10.1016/j.bmc.2007.10.036
  34. Slade, D.; Ferreira, D.; Marais, J. P. J. Phytochem. 2005, 66, 2177 https://doi.org/10.1016/j.phytochem.2005.02.002
  35. Weniger, B.; Vonthron-Sénécheau, C.; Kaiser, M.; Brun, R.; Anton, R. Phytomedicine 2006, 13, 176 https://doi.org/10.1016/j.phymed.2004.10.008
  36. Ariyasena, J.; Baek, S. H.; Perry, N. B.; Weavers, R. T. J. Nat. Prod. 2004, 67, 693 https://doi.org/10.1021/np0340394
  37. Mayer, R. Phytochem. 2004, 65, 593 https://doi.org/10.1016/j.phytochem.2004.01.001
  38. Innocenti, M.; Michelozzi, M.; Giaccherini, C.; Ieri, F.; Vincieri, F. F.; Mulinacci, N. J. Agric. Food Chem. 2007, 55, 6596 https://doi.org/10.1021/jf070257h
  39. Likhitwitayawuid, K.; Kaewamatawong, R.; Ruangrungsi, N. Biochem. Systemat. Ecology 2005, 33, 527 https://doi.org/10.1016/j.bse.2004.10.014
  40. Rampendahl, C.; Seeger, T.; Geiger, H.; Zinsmeister, H. D. Phytochem. 1996, 41, 1621 https://doi.org/10.1016/0031-9422(95)00804-7
  41. Howell, H.; Malan, E.; Brand, D. J.; Kamara, B. I.; Bezuidenhoudt, B. C. B.; Marais, C.; Steenkamp, J. A. Chemistry of Natural Compounds 2007, 43, 533 https://doi.org/10.1007/s10600-007-0184-0
  42. Krammer, A.; Kirchhoff, P. D.; Venkatachalam, X. J. C. M.; Waldman, M. J. Mol. Graph. Model. 2005, 23, 395 https://doi.org/10.1016/j.jmgm.2004.11.007
  43. Verkhivker, G. M.; Bouzida, D.; Gehlhaar, D. K.; Rejto, P. A.; Arthurs, S.; Colson, A. B.; Freer, S. T.; Larson, V.; Lutyi, B. A.; Marrone, T.; Rose, P. W. Journal of Computer-Aided Molecular Design 2000, 14, 731 https://doi.org/10.1023/A:1008158231558

Cited by

  1. Biapigenin, Candidate of an Agonist of Human Peroxisome Proliferator-Activated Receptor γ with Anticancer Activity vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2717
  2. Binding Model of Amentoflavone to Peroxisome Proliferator-Activated Receptor &#x03B3; vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1475
  3. Cytotoxic Activities of Amentoflavone against Human Breast and Cervical Cancers are Mediated by Increasing of PTEN Expression Levels due to Peroxisome Proliferator-Activated Receptor γ Activation vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2219
  4. Anti-Inflammatory Activities of Biapigenin Mediated by Actions on p38 MAPK Pathway vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10460
  5. )phosphate nanocomposite vol.39, pp.9, 2015, https://doi.org/10.1039/C5NJ01463H
  6. Atropoisomerism in Biflavones: The Absolute Configuration of (−)-Agathisflavone via Chiroptical Spectroscopy vol.79, pp.10, 2016, https://doi.org/10.1021/acs.jnatprod.6b00395
  7. PTP1B inhibitory and cytotoxic activities of triterpenoids from the aerial parts of Agrimonia pilosa vol.26, pp.11, 2017, https://doi.org/10.1007/s00044-017-1986-7
  8. Flavonoids can be Potent Inhibitors of Human Phenylethanolamine N-Methyltransferase (hPNMT) vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1835
  9. Binding Models of Flavonols to Human Vascular Endothelial Growth Factor Receptor 2 vol.30, pp.9, 2008, https://doi.org/10.5012/bkcs.2009.30.9.2083
  10. Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions vol.27, pp.5, 2017, https://doi.org/10.4014/jmb.1701.01079
  11. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches vol.13, pp.6, 2008, https://doi.org/10.1371/journal.pone.0199020
  12. Morelloflavone as a novel inhibitor of mitotic kinesin Eg5 vol.166, pp.2, 2019, https://doi.org/10.1093/jb/mvz015
  13. Identification and Structural Elucidation of Anti-Inflammatory Compounds from Chinese Olive (Canarium Album L.) Fruit Extracts vol.8, pp.10, 2008, https://doi.org/10.3390/foods8100441
  14. Activation of Insulin Signaling by Botanical Products vol.22, pp.8, 2008, https://doi.org/10.3390/ijms22084193
  15. Computational insight into the selective allosteric inhibition for PTP1B versus TCPTP: a molecular modelling study vol.39, pp.15, 2021, https://doi.org/10.1080/07391102.2020.1790421