DOI QR코드

DOI QR Code

Enantioselective Electrophilic α-Amination of α-Cyanoketones Catalyzed by Chiral Nickel Complexes

  • Kim, Dae-Young (Department of Chemistry, Division of Applied Science, Soonchunhyang University)
  • Published : 2008.10.20

Abstract

Keywords

References

  1. Williams, R. M. Synthesis of Optically Active $\alpha$-Amino Acids; Pergamon: Oxford, 1989
  2. Duthaler, R. O. Tetrahedron 1994, 50, 1539 https://doi.org/10.1016/S0040-4020(01)80840-1
  3. Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789 https://doi.org/10.1016/S0040-4020(97)00476-6
  4. Arend, M. Angew. Chem. Int. Ed. 1999, 38, 2873 https://doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2873::AID-ANIE2873>3.0.CO;2-P
  5. Kotha, S. Acc. Chem. Res. 2003, 36, 342 https://doi.org/10.1021/ar020147q
  6. Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013 https://doi.org/10.1021/cr020020e
  7. Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584 https://doi.org/10.1021/cr050580o
  8. Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359 https://doi.org/10.1039/a908290e
  9. Matier, W. L.; Owens, D. A.; Comer, W. T.; Dietchman, D.; Ferguson, H. C.; Seidehamel, R. J.; Young, J. R. J. Med. Chem. 1973, 16, 901 https://doi.org/10.1021/jm00266a008
  10. Weinstock, L. M.; Davis, P.; Handelsman, B.; Tull, R. J. Org. Chem. 1967, 32, 2823 https://doi.org/10.1021/jo01284a040
  11. Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580 https://doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L
  12. Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, 1279 https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1279::AID-ANIE1279>3.0.CO;2-U
  13. Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.; Shibassaki, M. Angew. Chem. Int. Ed. 2000, 39, 1650 https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1650::AID-ANIE1650>3.0.CO;2-P
  14. Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157 https://doi.org/10.1021/ol990623l
  15. Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 762 https://doi.org/10.1021/ja9935207
  16. Greck, C.; Genet, J.-P. Synlett 1997, 741
  17. Genet, J.-P.; Greck, C.; Lavergne, D. Modern Amination Methods; Ricci, A., Ed.; Wiley- VCH: Weinheim, 2000; Ch. 3
  18. Duthaler, R. O. Angew. Chem. Int. Ed. 2003, 42, 975 https://doi.org/10.1002/anie.200390283
  19. Greck, C.; Drouillat, B.; Thomassigng, C. Eur. J. Org. Chem. 2004, 1377
  20. Erdik, E. Tetrahedron 2004, 60, 8742
  21. Janey, J. M. Angew. Chem. Int. Ed. 2005, 44, 4292 https://doi.org/10.1002/anie.200462314
  22. Juhl, K.; Jorgensen, K. A. J. Am. Chem. Soc. 2002, 124, 2420 https://doi.org/10.1021/ja0175486
  23. Marigo, M.; Juhl, K.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 1367 https://doi.org/10.1002/anie.200390350
  24. Ma, S.; Jiao, N.; Zheng, Z.; Ma, Z.; Lu, Z.; Ye, L.; Deng, Y.; Chen, G. Org. Lett. 2004, 6, 2193 https://doi.org/10.1021/ol0493498
  25. Pihko, P. M.; Pohjakallio, A. Synlett 2004, 2115
  26. Xu, X.; Yabuta, T.; Yuan, P.; Takemoto, Y. Synlett 2006, 137
  27. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4565 https://doi.org/10.1016/j.tetlet.2006.05.003
  28. Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc. 2006, 128, 16044 https://doi.org/10.1021/ja066808m
  29. Comelles, J.; Pericas, A.; Moreno-Manas, M.; Vallribera, A.; Drudis-Sole, G.; Lledos, A.; Parella, T.; Roglans, A.; Garcia-Grands, S.; Roces-Fernandez, L. J. Org. Chem. 2007, 72, 2077 https://doi.org/10.1021/jo0622678
  30. Mashiko, T.; Hara, K.; Tanaka, D.; Fujiwara, Y.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 11342 https://doi.org/10.1021/ja0752585
  31. Jung, S. H.; Kim, D. Y. Tetrahedron Lett. 2008, 49, 5527 https://doi.org/10.1016/j.tetlet.2008.07.041
  32. Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309 https://doi.org/10.1021/ol050413a
  33. Bernardi, L.; Zhuang, W.; Jorgensen, K. A. J. Am. Chem. Soc. 2005, 127, 5772 https://doi.org/10.1021/ja050989v
  34. Saaby, S.; Bella, M.; Jorgensen, K. A. J. Am. Chem. Soc. 2004, 126, 8120 https://doi.org/10.1021/ja047704j
  35. Liu, X.; Li, H.; Deng, L. Org. Lett. 2005, 7, 167 https://doi.org/10.1021/ol048190w
  36. Liu, Y.; Melgar-Fernandez, R.; Juaristi, E. J. Org. Chem. 2007, 72, 1522 https://doi.org/10.1021/jo0622633
  37. Hasegawa, Y.; Watanabe, M.; Gridnev, I. D.; Ikariya, T. J. Am. Chem. Soc. 2008, 130, 2158 https://doi.org/10.1021/ja710273s
  38. Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2006, 128, 3928 https://doi.org/10.1021/ja060312n
  39. Wang, B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768 https://doi.org/10.1021/ja0670409
  40. Nojiri, A.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 5630 https://doi.org/10.1021/ja800326d
  41. Lee, J. H.; Bang, H. T.; Kim, D. Y. Synlett 2008, 1821
  42. Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545 https://doi.org/10.1021/ol010281v
  43. Kim, D. Y.; Choi, Y. J.; Park, H. Y.; Joung, C. U.; Koh, K. O.; Mang, J. Y.; Jung, K.-Y. Synth. Commun. 2003, 33, 435 https://doi.org/10.1081/SCC-120015774
  44. Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897 https://doi.org/10.1021/jo0401772
  45. Park, E. J.; Kim, H. R.; Joung, C. W.; Kim, D. Y. Bull. Korean Chem. Soc. 2004, 25, 1451 https://doi.org/10.5012/bkcs.2004.25.10.1451
  46. Kim, D. Y.; Huh, S. C. Bull. Korean Chem. Soc. 2004, 25, 347 https://doi.org/10.5012/bkcs.2004.25.3.347
  47. Kang, Y. K.; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135
  48. Cho, M. J.; Kang, Y. K.; Lee, N. R.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2191 https://doi.org/10.5012/bkcs.2007.28.12.2191
  49. Kim, S. M.; Kang, Y. K.; Cho, M. J.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2007, 28, 2435 https://doi.org/10.5012/bkcs.2007.28.12.2435
  50. Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309 https://doi.org/10.1021/ol050413a
  51. Kim, H. R.; Kim, D. Y. Tetrahedron Lett. 2005, 46, 3115 https://doi.org/10.1016/j.tetlet.2005.02.164
  52. Kim, S. M.; Kang, Y. K.; Lee, K.; Mang, J. Y.; Kim, D. Y. Bull. Korean Chem. Soc. 2006, 27, 423 https://doi.org/10.5012/bkcs.2006.27.3.423
  53. Evans, D. A.; Seidel, D. J. Am. Chem. Soc. 2005, 127, 9958 https://doi.org/10.1021/ja052935r
  54. Evans, D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007, 129, 11583 https://doi.org/10.1021/ja0735913
  55. Fossy, J. S.; Matsubara, R.; Kiyohara, H.; Kobayashi, S. Inorg. Chem. 2008, 47, 781 https://doi.org/10.1021/ic7017727

Cited by

  1. Catalytic Enantioselective Fluorination of α-Chloro-β-keto Esters in the Presence of Chiral Nickel Complexes vol.352, pp.16, 2010, https://doi.org/10.1002/adsc.201000515
  2. Isoquinoline-catalyzed addition of 2-bromo-1-aryl-1-ethanone to dialkyl azodicarboxylate: synthesis of trialkyl 2-[(1E)-N-(alkoxycarbonyl)-2-aryl-2-oxoethanehydrazonoyl]hydrazine-1,1,2-tricarboxylate vol.143, pp.2, 2012, https://doi.org/10.1007/s00706-011-0643-y
  3. Enantioselective Michael Addition of 3-Aryl-Substituted Oxindoles to Methyl Vinyl Ketone Catalyzed by a Binaphthyl-Modified Bifunctional Organocatalyst vol.17, pp.6, 2012, https://doi.org/10.3390/molecules17067523
  4. ChemInform Abstract: Enantioselective Electrophilic α-Amination of α-Cyanoketones Catalyzed by Chiral Nickel Complexes. vol.40, pp.10, 2009, https://doi.org/10.1002/chin.200910028
  5. Enantioselective Fluorination of β-Keto Phosphonates and β-Ketoesters Catalyzed by Chiral Palladium Complexes vol.30, pp.4, 2008, https://doi.org/10.5012/bkcs.2009.30.4.829
  6. Palladium-catalyzed Asymmetric Mannich-type Reactions of α-Cyanoketones with N-Boc Aldimines vol.30, pp.7, 2008, https://doi.org/10.5012/bkcs.2009.30.7.1437
  7. Enantioselective Conjugate Addition of Fluoromalonate to Nitroalkenes Catalyzed by Chiral Nickel Complexes vol.30, pp.7, 2008, https://doi.org/10.5012/bkcs.2009.30.7.1439
  8. Organocatalytic Asymmetric Michael Addition of β-Ketoesters to Nitroalkenes vol.30, pp.7, 2008, https://doi.org/10.5012/bkcs.2009.30.7.1441
  9. Catalytic Asymmetric Electrophilic α-Amination of β-Ketoesters in the Presence of Chiral Nickel Complexes vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.249
  10. Catalytic Asymmetric Electrophilic α-Amination of β-Ketoesters in the Presence of Chiral Nickel Complexes vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.249
  11. Catalytic enantioselective conjugate addition of aromatic amines to fumarate derivatives: asymmetric synthesis of aspartic acid derivatives vol.65, pp.29, 2009, https://doi.org/10.1016/j.tet.2009.05.037
  12. Organocatalytic Enantioselective Synthesis of Tertiary α-Hydroxy Phosphonates vol.32, pp.3, 2008, https://doi.org/10.5012/bkcs.2011.32.3.785
  13. Organocatalytic Enantioselective Synthesis of Tertiary α-Hydroxy Phosphonates vol.32, pp.3, 2008, https://doi.org/10.5012/bkcs.2011.32.3.785
  14. Microwave-Assisted Organocatalytic Synthesis of Tetrahydroquinolines via Hydride Transfer and Cyclization vol.32, pp.5, 2008, https://doi.org/10.5012/bkcs.2011.32.5.1773
  15. Organocatalytic Enantioselective Michael Addition of α-Nitroacetate to α,β-Unsaturated Enones: A Route to Chiral γ-Nitro Ketones and δ-Keto Esters vol.32, pp.1, 2011, https://doi.org/10.5012/bkcs.2011.32.1.291
  16. Asymmetric Mannich-type Reactions of Fluorinated Ketoesters with Binaphthyl-Modified Thiourea Catalysts vol.32, pp.4, 2008, https://doi.org/10.5012/bkcs.2011.32.4.1195
  17. Organocatalytic Asymmetric Conjugate Addition of 3-Alkyl-Substituted Oxindoles to Vinyl Ketones vol.33, pp.10, 2008, https://doi.org/10.5012/bkcs.2012.33.10.3171
  18. Synthesis of Chiral Ligands on the Basis of 1-(Adamantan-1-yl)ethane-1,2-diamine vol.57, pp.2, 2008, https://doi.org/10.1134/s1070428021020135