References
- Rabaey, K.; Vertraete, W. Trends in Biotechnol. 2005, 23, 291 https://doi.org/10.1016/j.tibtech.2005.04.008
- Palmore, G. T. R. Trends in Biotechnol. 2004, 22, 99 https://doi.org/10.1016/j.tibtech.2004.01.004
- Lovley, D. R. 2006, 17, 327 https://doi.org/10.1016/j.copbio.2006.04.006
- Choi, Y.; Jung, E.; Park, H.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2007, 28, 1591 https://doi.org/10.5012/bkcs.2007.28.9.1591
- Shin, S.-H.; Choi, Y.; Na, S.-H.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2006, 27, 281 https://doi.org/10.5012/bkcs.2006.27.2.281
- Tsujimura, S.; Wadano, A.; Kano, K.; Ikeda, T. Enzyme Microb. Technol. 2001, 29, 225 https://doi.org/10.1016/S0141-0229(01)00374-X
- Tender, L. M.; Reimers, C. E.; Stecher, H. A.; Holmes, D. E.; Bond, D. R.; Lowy, D. A.; Pilobello, K.; Fertig, S. J.; Lovley, D. R. Nat. Biotechnol. 2002, 20, 821 https://doi.org/10.1038/nbt716
- Park, D. H.; Zeikus, J. G. Appl. Environ. Microbiol. 2000, 66, 1292 https://doi.org/10.1128/AEM.66.4.1292-1297.2000
- Gil, G. G.; Chang, I. S.; Kim, B. H.; Kim, M.; Jang, J.-K.; Park, H. S.; Kim, H. J. Biosens. Bioelectron. 2003, 18, 327 https://doi.org/10.1016/S0956-5663(02)00110-0
- Liu, H.; Logan, B. E. Environ. Sci. Technol. 2004, 38, 4040 https://doi.org/10.1021/es0499344
- Liu, H.; Ramnarayanan, B. E.; Logan, B. R. Environ. Sci. Technol. 2004, 38, 2281 https://doi.org/10.1021/es034923g
- Shantaram, A.; Beyenal, H.; Veluchamy, R.; Raajan, A.; Lewandowski, Z. Environ. Sci. Technol. 2005, 39, 5037 https://doi.org/10.1021/es0480668
- Choi, Y.; Song, J.; Jung, S.; Kim, S. J. Microbial. Biotechnol. 2001, 11, 863
- Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W. Appl. Environ. Microbiol. 2004, 70, 5373 https://doi.org/10.1128/AEM.70.9.5373-5382.2004
- Cheng, S. A.; Liu, H.; Logan, B. E. Environ. Sci. Technol. 2006, 40, 2426 https://doi.org/10.1021/es051652w
- Liu, H.; Cheng, S. A.; Logan, B. E. Environ. Sci. Technol. 2005, 39, 5488 https://doi.org/10.1021/es050316c
- Kim, N.; Choi, Y.; Jung, S.; Kim, S. Biotechnol. Bioeng. 2000, 70, 109 https://doi.org/10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M
- Choi, Y.; Jung, E.; Park, H.; Paik, S.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2004, 25, 813 https://doi.org/10.5012/bkcs.2004.25.6.813
- You, S. J.; Zhao, Q. L.; Zhang, J. N.; Jiang, J. Q.; Zhao, S. Q. J. Power Sources 2006, 162, 1409 https://doi.org/10.1016/j.jpowsour.2006.07.063
- Zhao, F.; Harnisch, F.; Schröder, U.; Scholz, F.; Bogdanoff, P.; Herrmann, I. Electrochem. Commun. 2005, 7, 1405 https://doi.org/10.1016/j.elecom.2005.09.032
- Cheng, S. A.; Liu, H.; Logan, B. E. Environ. Sci. Technol. 2006, 40, 364 https://doi.org/10.1021/es0512071
- Park, D. H.; Zeikus, J. G. Appl. Microbiol. Biotechnol. 2002, 59, 58 https://doi.org/10.1007/s00253-002-0972-1
- Chen, S. A.; Logan, B. E. Electrochem. Commun. 2007, 9, 492 https://doi.org/10.1016/j.elecom.2006.10.023
- Zhang, T.; Zeng, Y. L.; Chen, S. L.; Ai, X. P.; Yang, H. X. Electrochem. Commun. 2006, 9, 349 https://doi.org/10.1016/j.elecom.2006.09.025
- Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc. Chem. Commun. 1979, 14, 635
- Greene, R. L.; Street, G. B. Science 1984, 226, 651 https://doi.org/10.1126/science.226.4675.651
- Parthasarathy, R. V.; Martin, C. R. Nature 1994, 369, 298 https://doi.org/10.1038/369298a0
- Adam, H.; Agata, M.; Lewenstam, A. Talanta 1994, 41, 323 https://doi.org/10.1016/0039-9140(94)80129-0
- Li, C. M.; Sun, C. Q.; Song, S.; Choong, V. E.; Maracas, G.; Zhang, X. J. Frontiers Biosci. 2005, 10, 180 https://doi.org/10.2741/1519
- Fan, L. Z.; Joachim, M. Electrochem. Commun. 2006, 8, 937 https://doi.org/10.1016/j.elecom.2006.03.035
- Zhang, X.; Bai, R. J. Mater. Chem. 2002, 12, 2733 https://doi.org/10.1039/b201364a
- Zhang, X.; Bai, R. Langmuir 2002, 18, 3459 https://doi.org/10.1021/la015632t
- Cowlard, F. C.; Lewis, J. C. J. Mater. Sci. 1967, 2, 507 https://doi.org/10.1007/BF00752216
- Furukawa, Y.; Moriuchi, T.; Morishima, K. J. Micromech. Microeng. 2006, 16, S220 https://doi.org/10.1088/0960-1317/16/9/S08
- Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H. Enzyme Microbial Technol. 2002, 30, 145 https://doi.org/10.1016/S0141-0229(01)00478-1
- Ieropoulos, I. A.; Greenman, J.; Melhuish, C.; Hart, J. Enzyme Microb. Technol. 2005, 37, 238 https://doi.org/10.1016/j.enzmictec.2005.03.006
- Wilkinson, S.; Klar, J.; Applegarth, E. S. Electroanal. 2006, 18, 2001 https://doi.org/10.1002/elan.200603621
- Fan, Y.; Hu, H.; Liu, H. J. Power Source 2007, 171, 348 https://doi.org/10.1016/j.jpowsour.2007.06.220
- Choi, Y. J.; Kim, N. J.; Kim, S. H.; Jung, S. H. Bull. Korean Chem. Soc. 2003, 24, 437 https://doi.org/10.5012/bkcs.2003.24.4.437
- Delaney, G. M. J. Chem. Technol. Biotechnol. B Biotechnol. 1984, 34, 13
- Schroder, U.; Nieaen, J.; Scholz, F. Angew. Chem. Int. Ed. 2003, 42, 2880 https://doi.org/10.1002/anie.200350918
Cited by
- Uncertainties of Yeast-Based Biofuel Cell Operational Characteristics vol.11, pp.6, 2011, https://doi.org/10.1002/fuce.201100086
- Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges vol.13, pp.3, 2012, https://doi.org/10.1007/s10404-012-0986-7
- Graphene–sponges as high-performance low-cost anodes for microbial fuel cells vol.5, pp.5, 2012, https://doi.org/10.1039/c2ee03583a
- Nanostructured Macroporous Bioanode Based on Polyaniline-Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells vol.47, pp.24, 2013, https://doi.org/10.1021/es404163g
- Semiconducting polyurethane/polypyrrole/polyaniline for microorganism immobilization and wastewater treatment in anaerobic/aerobic sequential packed bed reactors vol.132, pp.28, 2015, https://doi.org/10.1002/app.42242
- -Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells vol.5, pp.72, 2015, https://doi.org/10.1039/C5RA09170E
- Isolation, Characterization and Assessment of Pseudomonas sp. VITDM1 for Electricity Generation in a Microbial Fuel Cell vol.55, pp.1, 2015, https://doi.org/10.1007/s12088-014-0491-7
- Design and fabrication of bioelectrodes for microbial bioelectrochemical systems vol.8, pp.12, 2015, https://doi.org/10.1039/C5EE01862E
- A Strategy to Enhance the Electrode Performance of Novel Three-Dimensional PEDOT/RVC Composites by Electrochemical Deposition Method vol.9, pp.5, 2017, https://doi.org/10.3390/polym9050157
- Construction of a Novel Three-Dimensional PEDOT/RVC Electrode Structure for Capacitive Deionization: Testing and Performance vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070847
- Preparation and microbial fuel cell application of sponge-structured hierarchical polyaniline-texture bioanode with an integration of electricity generation and energy storage vol.48, pp.11, 2018, https://doi.org/10.1007/s10800-018-1252-9
- One-step electrochemically synthesized graphene oxide coated on polypyrrole nanowires as anode for microbial fuel cell vol.8, pp.8, 2018, https://doi.org/10.1007/s13205-018-1321-0
- Use of Carbon Nanoparticles for Bacteria Immobilization in Microbial Fuel Cells for High Power Output vol.156, pp.10, 2009, https://doi.org/10.1149/1.3190477
- Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry vol.3, pp.5, 2010, https://doi.org/10.1039/b923503e
- Improved Performance of a Microbial Fuel Cell with Polypyrrole/Carbon Black Composite Coated Carbon Paper Anodes vol.29, pp.7, 2008, https://doi.org/10.5012/bkcs.2008.29.7.1344
- Direct Determination of Uric Acid in Human Serum Samples Using Polypyrrole Nanoelectrode Ensembles vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.454
- Three-Dimensional Conductive Nanowire Networks for Maximizing Anode Performance in Microbial Fuel Cells vol.16, pp.17, 2008, https://doi.org/10.1002/chem.200903486
- Performance of a Microbial Fuel Cell using a Magnet Attached Cathode vol.31, pp.6, 2008, https://doi.org/10.5012/bkcs.2010.31.6.1729
- Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells vol.102, pp.13, 2008, https://doi.org/10.1016/j.biortech.2011.04.008
- Influence of artificial mediators on yeast-based fuel cell performance vol.112, pp.4, 2008, https://doi.org/10.1016/j.jbiosc.2011.06.008
- Construction and Operation of a Scaled-up Microbial Fuel Cell vol.34, pp.1, 2008, https://doi.org/10.5012/bkcs.2013.34.1.317
- Perspective View on Materialistic, Mechanistic and Operating Challenges of Microbial Fuel Cell on Commercialisation and Their Way Ahead vol.4, pp.5, 2008, https://doi.org/10.1002/slct.201802694
- Evaluation of photoanode materials used in biophotovoltaic systems for renewable energy generation vol.5, pp.17, 2008, https://doi.org/10.1039/d1se00396h