DOI QR코드

DOI QR Code

Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output

  • Yuan, Yong (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Sung-Hyun (Department of Bioscience and Biotechnology, Konkuk University)
  • Published : 2008.01.20

Abstract

A microbial fuel cell is a noble green technology generating electricity from biomass and is expected to find applications in a real world. One of main hurdles to this purpose is the low power density. In this study, we constructed a prototype microbial fuel cell using Proteus vulgaris to study the effect of various reaction conditions on the performance. Main focus has been made on the modification of the anode with electropolymerized polypyrrole (Ppy). A dramatic power enhancement was resulted from the Ppy deposition onto the reticulated vitreous carbon (RVC) electrode. Our obtained maximum power density of 1.2 mW cm-3 is the highest value among the reported ones for the similar system. Further power enhancement was possible by increasing the ionic strength of the solution to decrease internal resistance of the cell. Other variables such as the deposition time, kinds of mediators, and amount of bacteria have also been examined.

Keywords

References

  1. Rabaey, K.; Vertraete, W. Trends in Biotechnol. 2005, 23, 291 https://doi.org/10.1016/j.tibtech.2005.04.008
  2. Palmore, G. T. R. Trends in Biotechnol. 2004, 22, 99 https://doi.org/10.1016/j.tibtech.2004.01.004
  3. Lovley, D. R. 2006, 17, 327 https://doi.org/10.1016/j.copbio.2006.04.006
  4. Choi, Y.; Jung, E.; Park, H.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2007, 28, 1591 https://doi.org/10.5012/bkcs.2007.28.9.1591
  5. Shin, S.-H.; Choi, Y.; Na, S.-H.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2006, 27, 281 https://doi.org/10.5012/bkcs.2006.27.2.281
  6. Tsujimura, S.; Wadano, A.; Kano, K.; Ikeda, T. Enzyme Microb. Technol. 2001, 29, 225 https://doi.org/10.1016/S0141-0229(01)00374-X
  7. Tender, L. M.; Reimers, C. E.; Stecher, H. A.; Holmes, D. E.; Bond, D. R.; Lowy, D. A.; Pilobello, K.; Fertig, S. J.; Lovley, D. R. Nat. Biotechnol. 2002, 20, 821 https://doi.org/10.1038/nbt716
  8. Park, D. H.; Zeikus, J. G. Appl. Environ. Microbiol. 2000, 66, 1292 https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  9. Gil, G. G.; Chang, I. S.; Kim, B. H.; Kim, M.; Jang, J.-K.; Park, H. S.; Kim, H. J. Biosens. Bioelectron. 2003, 18, 327 https://doi.org/10.1016/S0956-5663(02)00110-0
  10. Liu, H.; Logan, B. E. Environ. Sci. Technol. 2004, 38, 4040 https://doi.org/10.1021/es0499344
  11. Liu, H.; Ramnarayanan, B. E.; Logan, B. R. Environ. Sci. Technol. 2004, 38, 2281 https://doi.org/10.1021/es034923g
  12. Shantaram, A.; Beyenal, H.; Veluchamy, R.; Raajan, A.; Lewandowski, Z. Environ. Sci. Technol. 2005, 39, 5037 https://doi.org/10.1021/es0480668
  13. Choi, Y.; Song, J.; Jung, S.; Kim, S. J. Microbial. Biotechnol. 2001, 11, 863
  14. Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W. Appl. Environ. Microbiol. 2004, 70, 5373 https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  15. Cheng, S. A.; Liu, H.; Logan, B. E. Environ. Sci. Technol. 2006, 40, 2426 https://doi.org/10.1021/es051652w
  16. Liu, H.; Cheng, S. A.; Logan, B. E. Environ. Sci. Technol. 2005, 39, 5488 https://doi.org/10.1021/es050316c
  17. Kim, N.; Choi, Y.; Jung, S.; Kim, S. Biotechnol. Bioeng. 2000, 70, 109 https://doi.org/10.1002/1097-0290(20001005)70:1<109::AID-BIT11>3.0.CO;2-M
  18. Choi, Y.; Jung, E.; Park, H.; Paik, S.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2004, 25, 813 https://doi.org/10.5012/bkcs.2004.25.6.813
  19. You, S. J.; Zhao, Q. L.; Zhang, J. N.; Jiang, J. Q.; Zhao, S. Q. J. Power Sources 2006, 162, 1409 https://doi.org/10.1016/j.jpowsour.2006.07.063
  20. Zhao, F.; Harnisch, F.; Schröder, U.; Scholz, F.; Bogdanoff, P.; Herrmann, I. Electrochem. Commun. 2005, 7, 1405 https://doi.org/10.1016/j.elecom.2005.09.032
  21. Cheng, S. A.; Liu, H.; Logan, B. E. Environ. Sci. Technol. 2006, 40, 364 https://doi.org/10.1021/es0512071
  22. Park, D. H.; Zeikus, J. G. Appl. Microbiol. Biotechnol. 2002, 59, 58 https://doi.org/10.1007/s00253-002-0972-1
  23. Chen, S. A.; Logan, B. E. Electrochem. Commun. 2007, 9, 492 https://doi.org/10.1016/j.elecom.2006.10.023
  24. Zhang, T.; Zeng, Y. L.; Chen, S. L.; Ai, X. P.; Yang, H. X. Electrochem. Commun. 2006, 9, 349 https://doi.org/10.1016/j.elecom.2006.09.025
  25. Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc. Chem. Commun. 1979, 14, 635
  26. Greene, R. L.; Street, G. B. Science 1984, 226, 651 https://doi.org/10.1126/science.226.4675.651
  27. Parthasarathy, R. V.; Martin, C. R. Nature 1994, 369, 298 https://doi.org/10.1038/369298a0
  28. Adam, H.; Agata, M.; Lewenstam, A. Talanta 1994, 41, 323 https://doi.org/10.1016/0039-9140(94)80129-0
  29. Li, C. M.; Sun, C. Q.; Song, S.; Choong, V. E.; Maracas, G.; Zhang, X. J. Frontiers Biosci. 2005, 10, 180 https://doi.org/10.2741/1519
  30. Fan, L. Z.; Joachim, M. Electrochem. Commun. 2006, 8, 937 https://doi.org/10.1016/j.elecom.2006.03.035
  31. Zhang, X.; Bai, R. J. Mater. Chem. 2002, 12, 2733 https://doi.org/10.1039/b201364a
  32. Zhang, X.; Bai, R. Langmuir 2002, 18, 3459 https://doi.org/10.1021/la015632t
  33. Cowlard, F. C.; Lewis, J. C. J. Mater. Sci. 1967, 2, 507 https://doi.org/10.1007/BF00752216
  34. Furukawa, Y.; Moriuchi, T.; Morishima, K. J. Micromech. Microeng. 2006, 16, S220 https://doi.org/10.1088/0960-1317/16/9/S08
  35. Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H. Enzyme Microbial Technol. 2002, 30, 145 https://doi.org/10.1016/S0141-0229(01)00478-1
  36. Ieropoulos, I. A.; Greenman, J.; Melhuish, C.; Hart, J. Enzyme Microb. Technol. 2005, 37, 238 https://doi.org/10.1016/j.enzmictec.2005.03.006
  37. Wilkinson, S.; Klar, J.; Applegarth, E. S. Electroanal. 2006, 18, 2001 https://doi.org/10.1002/elan.200603621
  38. Fan, Y.; Hu, H.; Liu, H. J. Power Source 2007, 171, 348 https://doi.org/10.1016/j.jpowsour.2007.06.220
  39. Choi, Y. J.; Kim, N. J.; Kim, S. H.; Jung, S. H. Bull. Korean Chem. Soc. 2003, 24, 437 https://doi.org/10.5012/bkcs.2003.24.4.437
  40. Delaney, G. M. J. Chem. Technol. Biotechnol. B Biotechnol. 1984, 34, 13
  41. Schroder, U.; Nieaen, J.; Scholz, F. Angew. Chem. Int. Ed. 2003, 42, 2880 https://doi.org/10.1002/anie.200350918

Cited by

  1. Uncertainties of Yeast-Based Biofuel Cell Operational Characteristics vol.11, pp.6, 2011, https://doi.org/10.1002/fuce.201100086
  2. Miniaturizing microbial fuel cells for potential portable power sources: promises and challenges vol.13, pp.3, 2012, https://doi.org/10.1007/s10404-012-0986-7
  3. Graphene–sponges as high-performance low-cost anodes for microbial fuel cells vol.5, pp.5, 2012, https://doi.org/10.1039/c2ee03583a
  4. Nanostructured Macroporous Bioanode Based on Polyaniline-Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells vol.47, pp.24, 2013, https://doi.org/10.1021/es404163g
  5. Semiconducting polyurethane/polypyrrole/polyaniline for microorganism immobilization and wastewater treatment in anaerobic/aerobic sequential packed bed reactors vol.132, pp.28, 2015, https://doi.org/10.1002/app.42242
  6. -Cysteine tailored porous graphene aerogel for enhanced power generation in microbial fuel cells vol.5, pp.72, 2015, https://doi.org/10.1039/C5RA09170E
  7. Isolation, Characterization and Assessment of Pseudomonas sp. VITDM1 for Electricity Generation in a Microbial Fuel Cell vol.55, pp.1, 2015, https://doi.org/10.1007/s12088-014-0491-7
  8. Design and fabrication of bioelectrodes for microbial bioelectrochemical systems vol.8, pp.12, 2015, https://doi.org/10.1039/C5EE01862E
  9. A Strategy to Enhance the Electrode Performance of Novel Three-Dimensional PEDOT/RVC Composites by Electrochemical Deposition Method vol.9, pp.5, 2017, https://doi.org/10.3390/polym9050157
  10. Construction of a Novel Three-Dimensional PEDOT/RVC Electrode Structure for Capacitive Deionization: Testing and Performance vol.10, pp.7, 2017, https://doi.org/10.3390/ma10070847
  11. Preparation and microbial fuel cell application of sponge-structured hierarchical polyaniline-texture bioanode with an integration of electricity generation and energy storage vol.48, pp.11, 2018, https://doi.org/10.1007/s10800-018-1252-9
  12. One-step electrochemically synthesized graphene oxide coated on polypyrrole nanowires as anode for microbial fuel cell vol.8, pp.8, 2018, https://doi.org/10.1007/s13205-018-1321-0
  13. Use of Carbon Nanoparticles for Bacteria Immobilization in Microbial Fuel Cells for High Power Output vol.156, pp.10, 2009, https://doi.org/10.1149/1.3190477
  14. Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry vol.3, pp.5, 2010, https://doi.org/10.1039/b923503e
  15. Improved Performance of a Microbial Fuel Cell with Polypyrrole/Carbon Black Composite Coated Carbon Paper Anodes vol.29, pp.7, 2008, https://doi.org/10.5012/bkcs.2008.29.7.1344
  16. Direct Determination of Uric Acid in Human Serum Samples Using Polypyrrole Nanoelectrode Ensembles vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.454
  17. Three-Dimensional Conductive Nanowire Networks for Maximizing Anode Performance in Microbial Fuel Cells vol.16, pp.17, 2008, https://doi.org/10.1002/chem.200903486
  18. Performance of a Microbial Fuel Cell using a Magnet Attached Cathode vol.31, pp.6, 2008, https://doi.org/10.5012/bkcs.2010.31.6.1729
  19. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells vol.102, pp.13, 2008, https://doi.org/10.1016/j.biortech.2011.04.008
  20. Influence of artificial mediators on yeast-based fuel cell performance vol.112, pp.4, 2008, https://doi.org/10.1016/j.jbiosc.2011.06.008
  21. Construction and Operation of a Scaled-up Microbial Fuel Cell vol.34, pp.1, 2008, https://doi.org/10.5012/bkcs.2013.34.1.317
  22. Perspective View on Materialistic, Mechanistic and Operating Challenges of Microbial Fuel Cell on Commercialisation and Their Way Ahead vol.4, pp.5, 2008, https://doi.org/10.1002/slct.201802694
  23. Evaluation of photoanode materials used in biophotovoltaic systems for renewable energy generation vol.5, pp.17, 2008, https://doi.org/10.1039/d1se00396h