DOI QR코드

DOI QR Code

Electrochemical Behaviors of Hydroquinone on a Carbon Paste Electrode with Ionic Liquid as Binder

  • Sun, Wei (Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Jiang, Qiang (Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Yang, Maoxia (Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology) ;
  • Jiao, Kui (Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology)
  • Published : 2008.05.20

Abstract

In this paper the electrochemical behaviors of hydroquinone ($H_2Q$) were investigated on a carbon paste electrode using room temperature ionic liquid N-butylpyridinium hexafluorophosphate ($BPPF_6$) as binder (ILCPE) and further applied to $H_2Q$ determination. In pH 2.5 phosphate buffer solution (PBS), the electrochemical response of H2Q was greatly improved on the IL-CPE with a pair of well-defined quasi-reversible redox peaks appeared, which was attributed to the electrocatalytic activity of IL-CPE to the $H_2Q$. The redox peak potentials were located at 0.340 V (Epa) and 0.240 V (Epc) (vs. the saturated calomel electrode, SCE), respectively. The formal potential ($E^0$') was calculated as 0.290 V and the peak-to-peak separation (${\Delta}E_p$) was 0.100 V. The electrochemical parameters of $H_2Q$ on the IL-CPE were further calculated by cyclic voltammetry. Under the selected conditions the anodic peak current was linear with $H_2Q$ concentration over the range from $5.0\;{{\times}}\;10^{-6}$ to $5.0\;{\times}\;10^{-3}\;mol\;L^{-1}$ with the detection limit as $2.5\;{\times}\;10^{-6}\;mol\;L^{-1}$ (3$\sigma$ ) by cyclic voltammetry. The proposed method was successful applied to determination of $H_2Q$ content in a synthetic wastewater sample without the interferences of commonly coexisting substances.

Keywords

References

  1. Duvall, S. H.; McCreery, R. L. Anal. Chem. 1999, 71, 4594 https://doi.org/10.1021/ac990399d
  2. Murray, R. W. Acc. Chem. Res. 1980, 13, 135 https://doi.org/10.1021/ar50149a002
  3. Qi, H. L.; Zhang, C. X. Electroanalysis 2005, 17, 832 https://doi.org/10.1002/elan.200403150
  4. Buzzo, M. C.; Hardace, C.; Compton, R. G. Anal. Chem. 2004, 76, 4583 https://doi.org/10.1021/ac040042w
  5. Li, Z.; Liu, H.; Liu, Y.; He, P.; Li, H.; Li, J. H. Langmuir 2004, 20, 10260 https://doi.org/10.1021/la048480l
  6. He, P.; Liu, H.; Li, Z.; Li, J. H. J. Electrochem. Soc. 2005, 152, E146 https://doi.org/10.1149/1.1870754
  7. Maleki, N.; Safavi, A.; Tajabadi, F. Anal. Chem. 2006, 78, 3820 https://doi.org/10.1021/ac060070+
  8. Zhao, F.; Wu, X.; Wang, M.; Liu, Y.; Gao, L.; Dong, S. J. Anal. Chem. 2004, 76, 4960 https://doi.org/10.1021/ac0494026
  9. Sun, W.; Wang, D. D.; Gao, R. F.; Jiao, K. Electrochem. Commun. 2007, 9, 1159 https://doi.org/10.1016/j.elecom.2007.01.003
  10. Sun, W.; Yang, M. X.; Jiao, K. Anal. Bioanal. Chem. 2007, 389, 1283 https://doi.org/10.1007/s00216-007-1518-2
  11. Yan, Q. P.; Zhao, F. Q.; Li, G. Z.; Zeng, B. Z. Electroanalysis 2006, 18, 1075 https://doi.org/10.1002/elan.200603502
  12. Li, J. W.; Zhao, F. Q.; Xiao, P.; Zeng, B. Z. Chinese J. Anal. Chem. 2006, 34, S5
  13. Li, C. M.; Zang, J. M.; Zhan, D. P.; Chen, W.; Sun, C. Q.; Teo, A. L.; Chua, Y. T.; Lee, V. S.; Moochhala, S. M. Electroanalysis 2006, 18, 713 https://doi.org/10.1002/elan.200503457
  14. Zhao, Y. F.; Gao, Y. Q.; Zhan, D. P.; Liu, H.; Zhao, Q.; Kou, Y.; Shao, Y. H.; Li, M. X.; Zhuang, Q. K.; Zhu, Z. W. Talanta 2005, 66, 51 https://doi.org/10.1016/j.talanta.2004.09.019
  15. Lee, B. L.; Ong, H. Y.; Shi, C. Y.; Ong, C. N. J. Chromatogr. 1993, 619, 259 https://doi.org/10.1016/0378-4347(93)80115-K
  16. Sakodinskaya, I. K.; Desiderio, C.; Nardi, A.; Fanali, S. J. Chromatogr. 1992, 596, 95 https://doi.org/10.1016/0021-9673(92)80208-C
  17. Firth, J.; Rix, I. Analyst 1986, 111, 129 https://doi.org/10.1039/an9861100129
  18. Wang, L. H. Analyst 1995, 120, 2241 https://doi.org/10.1039/an9952002241
  19. Aihara, M.; Fukata, M. Anal. Lett. 1987, 20, 669 https://doi.org/10.1080/00032718708062920
  20. Vieira, I. C.; Fatibello-Filho, O.; Angnes, L. Anal. Chim. Acta 1999, 398, 145 https://doi.org/10.1016/S0003-2670(99)00455-9
  21. Vieira, I. C.; Fatibello-Filho, O. Talanta 2000, 52, 681 https://doi.org/10.1016/S0039-9140(00)00420-3
  22. Oliveira, I. R. W. Z.; Vieira, I. C.; Lupetti, K. O.; Fatibello-Filho, O.; Favere, V. T.; Laranjeira, M. C. M. Anal. Lett. 2004, 15, 3111
  23. Maleki, N.; Safavi, A.; Sedaghati, F.; Tajabadi, F. Anal. Biochem. 2007, 369, 149 https://doi.org/10.1016/j.ab.2007.04.024
  24. Musameh, M.; Wang, J. Anal. Chim. Acta 2008, 606, 45 https://doi.org/10.1016/j.aca.2007.11.012
  25. Sun, W.; Yang, M. X.; Gao, R. F.; Jiao, K. Electroanalysis 2007, 19, 1597 https://doi.org/10.1002/elan.200703889
  26. Nicholson, R. S.; Irving, S. Anal. Chem. 1964, 36, 706 https://doi.org/10.1021/ac60210a007
  27. Zhang, Y.; Zheng, J. B. Electrochim. Acta 2007, 52, 7210 https://doi.org/10.1016/j.electacta.2007.05.039
  28. Nicholson, R. S. Anal. Chem. 1965, 37, 1351 https://doi.org/10.1021/ac60230a016
  29. Anson, F. C. Anal. Chem. 1964, 36, 932 https://doi.org/10.1021/ac60210a068
  30. Peng, J.; Gao, Z. N. Anal. Bioanal. Chem. 2006, 384, 1525 https://doi.org/10.1007/s00216-006-0329-1
  31. Wang, L.; Huang, P. F.; Wang, H. J.; Bai, J. Y.; Zhang, L. Y.; Zhao, Y. Q. Anal. Chim. 2007, 97, 395 https://doi.org/10.1002/adic.200790024
  32. Wang, L.; Huang, P. F.; Bai, J. Y.; Wang, H. J.; Zhang, L. Y.; Zhao, Y. Q. Int. J. Electrochem. Sci. 2007, 2, 123
  33. Ding, Y. P.; Liu, W. L.; Wu, Q. S.; Wang, X. G. J. Electroanal. Chem. 2005, 575, 275 https://doi.org/10.1016/j.jelechem.2004.09.020
  34. Liu, X. X.; Wang, L. S.; Zhang, S. F.; Deng, X. R.; Tang, X. L.; Sun, D. C. Chinese J. Instrumental Anal. 2007, 26, 24
  35. Wang, S. F.; Du, D. Sensors 2002, 2, 41 https://doi.org/10.3390/s20200041
  36. Zhang, Y.; Yuan, R.; Chai, Y. Q.; Zhuo, Y.; Fu, Y. Z. J. Southwest China Normal Univer. 2006, 31, 86

Cited by

  1. Simultaneous determination of catechol and hydroquinone based on poly (diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode vol.16, pp.4, 2012, https://doi.org/10.1007/s10008-011-1526-1
  2. A novel amperometric sensor based on intercalated montmorillonite modified carbon paste electrode for hydroquinone determination vol.4, pp.3, 2012, https://doi.org/10.1039/c2ay05843j
  3. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E vol.69, pp.1, 2015, https://doi.org/10.2478/s11696-014-0608-9
  4. Electrochemical properties of α-tocopherol in aqueous electrolytes after its previous extraction into the glassy carbon paste from aqueous-acetonic mixture vol.147, pp.1, 2016, https://doi.org/10.1007/s00706-015-1620-7
  5. Nickel oxide nanoparticles/ionic liquid crystal modified carbon composite electrode for determination of neurotransmitters and paracetamol vol.40, pp.1, 2016, https://doi.org/10.1039/C5NJ01804H
  6. Electrochemical Study of Trametes Versicolor Laccase Compatibility to Different Polyphenolic Substrates vol.5, pp.1, 2017, https://doi.org/10.3390/chemosensors5010009
  7. Ionic Liquid Crystals Modifier for Selective Determination of Terazosin Antihypertensive Drug in Presence of Common Interference Compounds vol.7, pp.1, 2017, https://doi.org/10.3390/cryst7010027
  8. Electrochemical Sensor Based on Ionic Liquid Crystal Modified Carbon Paste Electrode in Presence of Surface Active Agents for Enoxacin Antibacterial Drug vol.162, pp.1, 2015, https://doi.org/10.1149/2.0251501jes
  9. Recent Advances in Electroanalysis of Organic Compounds at Carbon Paste Electrodes vol.39, pp.3, 2008, https://doi.org/10.1080/10408340903011853
  10. Electrochemical determination of hydroquinone using hydrophobic ionic liquid-type carbon paste electrodes vol.4, pp.None, 2008, https://doi.org/10.1186/1752-153x-4-17
  11. A review on electrodes modified with ionic liquids vol.656, pp.1, 2011, https://doi.org/10.1016/j.jelechem.2011.01.008
  12. Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee vol.93, pp.None, 2008, https://doi.org/10.1016/j.talanta.2012.01.058
  13. Electrochemical detection of hydroquinone with a gold nanoparticle and graphene modified carbon ionic liquid electrode vol.168, pp.None, 2008, https://doi.org/10.1016/j.snb.2011.12.108
  14. Electrochemical performance of TiO2/Au/carbon nanotubes composite interface for hydroquinone detection vol.8, pp.8, 2008, https://doi.org/10.1049/mnl.2013.0195