DOI QR코드

DOI QR Code

Nonlinear Entropy Production in a Reversible Oregonator Model

  • Basavaraja, C. (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Pierson, R. (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Park, Seung-Hyun (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Jeon, Eun-Ji (Department of Chemistry and Institute of Functional Materials, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry and Institute of Functional Materials, Inje University)
  • Published : 2008.05.20

Abstract

The entropy production in a non-equilibrium state based on the reversible Oregonator model of the Belousov-Zhabotinskii (BZ) reaction system has been studied. The reaction affinity and the reaction rate for the individual steps have been calculated by varying the concentrations of key variables in the system. The result shows a linear relationship between the reaction affinity and the reaction rate in the given concentration range. However, the overall entropy calculated on the basic assumption that the entropy in a reaction system corresponds to the summation of a product of reaction affinity and reaction rate of individual steps shows a nonlinearity of the reaction system. The results well agrees with the fact that the entropy production is not linear or complicated function in a non-linear reaction system.

Keywords

References

  1. Atkins, P.; de Paula, J. Physical Chemistry for the Life Sciences; Oxford University Press: UK, 2006
  2. Gray, P.; Scott, S. K. Chemical Oscillations and Instabilities; Oxford; Clarendon Press: 1990
  3. Belousov, B. P. In Oscillating Patterns and Traveling Waves in a Chemical System; Field, R. J.; Burger, M., Eds.; Wiley: New York, 1985
  4. Field, R. J.; Noyes, R. M. J. Chem. Phys. 1974, 60, 1877 https://doi.org/10.1063/1.1681288
  5. Benjamin, R.; Ross, J. J. Chem. Phys. 1988, 89(2), 1064 https://doi.org/10.1063/1.455258
  6. Kettunen, P.; Amemiya, T.; Ohmori, T.; Yamaguchi, T. Phys. Rev. E 1999, 60, 1512 https://doi.org/10.1103/PhysRevE.60.1512
  7. Basavaraja, C.; Kulkarni, V. R.; Vishnuvardhan, T. K.; Mohan, S.; Iyer, Y. M.; Subba Rao, G. V. Ind. J. Chem. 2005, 44, 1894
  8. Basavaraja, C.; Bagchi, B.; Park, D. Y.; Choi, Y. M.; Park, H. T.; Choe, S. J.; Huh, D. S. Bull. Korean Chem. Soc. 2006, 27(10), 1525 https://doi.org/10.5012/bkcs.2006.27.10.1525
  9. Basavaraja, C.; Huh, D. S.; Park, S. H.; Jeon, U. J.; Pierson, R.; Vishnuvardhan, T. K.; Kulkarni, V. R. Bull. Korean Chem. Soc. 2007, 28(9), 1489 https://doi.org/10.5012/bkcs.2007.28.9.1489
  10. Tyson, J. J. J. Phys. Chem. 1982, 86, 3006 https://doi.org/10.1021/j100212a039
  11. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes in FORTRAN; The Art of Scientific Computing-Cambridge University Press: 1996; p 704
  12. Ross, J.; Vlad, M. O. J. Phys. Chem. A 2005, 109, 10607 https://doi.org/10.1021/jp054432d
  13. Dutt, A. K. J. Chem. Phys. 1999, 110(2), 1061 https://doi.org/10.1063/1.478149
  14. Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Functions; Wiley-Interscience: New York, 1971