DOI QR코드

DOI QR Code

Field Experiments on Bioelectricity Production from Lake Sediment Using Microbial Fuel Cell Technology

  • Hong, Seok-Won (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Kim, Hyung-Joo (Department of Microbial Engineering, Konkuk University) ;
  • Choi, Yong-Su (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Chung, Tai-Hak (School of Civil, Urban, and Geosystem Engineering, Seoul National University)
  • Published : 2008.11.20

Abstract

Keywords

References

  1. Allen, R. M.; Bennetto, H. P. Appl. Biochem. Biotechnol. 1993, 39, 27 https://doi.org/10.1007/BF02918975
  2. Holmes, D. E.; Bond, D. R.; Lovley, D. R. Appl. Environ. Microbiol. 2004, 70, 1234 https://doi.org/10.1128/AEM.70.2.1234-1237.2004
  3. Bond, D. R.; Lovley, D. R. Appl. Environ. Microbiol. 2003, 69, 1548 https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  4. Chaudhuri, S. K.; Lovley, D. R. Nat. Biotechnol. 2003, 21, 1229 https://doi.org/10.1038/nbt867
  5. Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H. Enzyme Microb. Technol. 2002, 30, 145 https://doi.org/10.1016/S0141-0229(01)00478-1
  6. Rabaey, K.; Verstraete, W. Trends Biotechnol. 2005, 23, 291 https://doi.org/10.1016/j.tibtech.2005.04.008
  7. Yuan, Y.; Kim, S. Bull. Korean Chem. Soc. 2008, 29, 1344 https://doi.org/10.5012/bkcs.2008.29.7.1344
  8. Liu, H.; Ramnarayanan, R.; Logan, B. E. Environ. Sci. Technol. 2004, 38, 2281 https://doi.org/10.1021/es034923g
  9. Min, B. K.; Cheng, S. A.; Logan, B. E. Water Res. 2005, 39, 1675 https://doi.org/10.1016/j.watres.2005.02.002
  10. Du, Z. W.; Li, H. R.; Gu, T. Y. Biotechnol. Adv. 2007, 25, 464 https://doi.org/10.1016/j.biotechadv.2007.05.004
  11. Chang, I. S.; Jang, J. K.; Gil, G. C.; Kim, M.; Kim, H. J.; Cho, B. W.; Kim, B. H. Biosens. Bioelectron. 2004, 19, 607 https://doi.org/10.1016/S0956-5663(03)00272-0
  12. Kim, M.; Hyun, M. S.; Gadd, G. M.; Kim, H. J. J. Environ. Monit. 2007, 9, 1323 https://doi.org/10.1039/b713114c
  13. Reimers, C. E.; Tender, L. M.; Fertig, S.; Wang, W. Environ. Sci. Technol. 2001, 35, 192 https://doi.org/10.1021/es001223s
  14. Tender, L. M.; Reimers, C. E.; Stecher, H. A.; Holmes, D. E.; Bond, D. R.; Lowy, D. A.; Pilobello, K.; Fertig, S. J.; Lovley, D. R. Nat. Biotechnol. 2002, 20, 821 https://doi.org/10.1038/nbt716
  15. Reimers, C. E.; Girguis, P.; Stecher, H. A.; Tender, L. M.; Ryckelynck, N.; Whaling, P. Geobiology 2006, 4, 123 https://doi.org/10.1111/j.1472-4669.2006.00071.x
  16. Nielsen, M. E.; Reimers, C. E.; Stecher, H. A. Environ. Sci. Technol. 2007, 41, 7895 https://doi.org/10.1021/es071740b
  17. Martens, C. S.; Berner, R. A. Science 1974, 185, 1167 https://doi.org/10.1126/science.185.4157.1167
  18. Roden, E. E.; Wetzel, R. G. Limnol. Oceanogr. 1996, 41, 1733 https://doi.org/10.4319/lo.1996.41.8.1733
  19. Lovley, D. R. Curr. Opin. Biotechnol. 2006, 17, 327 https://doi.org/10.1016/j.copbio.2006.04.006
  20. Loring, D. H.; Rantala, R. T. T. Earth-Sci. Rev. 1992, 32, 235 https://doi.org/10.1016/0012-8252(92)90001-A
  21. He, Z.; Shao, H. B.; Angenent, L. T. Biosens. Bioelectron. 2007, 22, 3252 https://doi.org/10.1016/j.bios.2007.01.010
  22. Logan, B. E.; Hamelers, B.; Rozendal, R.; Schrorder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Environ. Sci. Technol. 2006, 40, 5181 https://doi.org/10.1021/es0605016
  23. Aelterman, P.; Rabaey, K. Pham, H. T.; Boon, N.; Verstraete, W. Environ. Sci. Technol. 2006, 40, 3388 https://doi.org/10.1021/es0525511
  24. Shantaram, A.; Beyenal, H.; Raajan, R.; Veluchamy, A.; Lewandowski, Z. Environ. Sci. Technol. 2005, 39, 5037 https://doi.org/10.1021/es0480668
  25. Zhao, F.; Harnisch, F.; Schrorder, U.; Scholz, F.; Bogdanoff, P.; Herrmann, I. Environ. Sci. Technol. 2006, 40, 5193 https://doi.org/10.1021/es060332p
  26. Pham, T. H.; Jang, J. K.; Chang, I. S.; Kim, B. H. J. Microbiol. Biotechnol. 2004, 14, 324
  27. Kim, B. H.; Chang, I. S.; Gadd, G. M. Appl. Microbiol. Biotechnol. 2007, 76, 485 https://doi.org/10.1007/s00253-007-1027-4
  28. Lovley D. R. Science 2001, 293, 1444 https://doi.org/10.1126/science.1063294
  29. Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R. Science 2002, 295, 483 https://doi.org/10.1126/science.1066771
  30. Postgate, J. R. The Sulphate-reducing Bacteria. 2nd ed.; Cambridge University Press: Cambridge, U. K., 1984
  31. Farquhar, G. J.; Rovers, F. A. Water Air Soil Pollut. 1973, 2, 483 https://doi.org/10.1007/BF00585092
  32. Stuart, S. L.; Woods, S. L.; Lemmon, T. L.; Ingle, J. D. Biotechnol. Bioeng. 1999, 63, 69 https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<69::AID-BIT7>3.0.CO;2-2
  33. Capone, D. G.; Kiene, R. P. Limnol. Oceanogr. 1988, 33, 725 https://doi.org/10.4319/lo.1988.33.4_part_2.0725
  34. Ishii, S.; Hotta, Y.; Watanabe, K. Biosci. Biotechnol. Biochem. 2008, 72, 286 https://doi.org/10.1271/bbb.70179

Cited by

  1. Electrochemical Control of Methane Emission from Lake Sediment Using Microbial Fuel Cells vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2401
  2. Obtaining microbial communities with exoelectrogenic activity from anaerobic sludge using a simplified procedure vol.89, pp.11, 2014, https://doi.org/10.1002/jctb.4252
  3. Sediment microbial fuel cells as a new source of renewable and sustainable energy: present status and future prospects vol.5, pp.114, 2015, https://doi.org/10.1039/C5RA15279H
  4. DEVELOPMENT OF A METHOD FOR IMPROVING REDUCED ENVIRONMENT OF THE SLUDGE DEPOSITED IN ESTUARINE REGIONS vol.71, pp.4, 2015, https://doi.org/10.2208/jscejhe.71.I_697
  5. EFFECTIVE USE OF GRANULATED COAL ASH IN SEDIMENT MICROBIAL FUEL CELLS vol.72, pp.2, 2016, https://doi.org/10.2208/kaigan.72.I_1327
  6. In Situ Bioremediation Using Sediment Microbial Fuel Cell vol.21, pp.2, 2017, https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000339
  7. Variation in properties of the sediment following electrokinetic treatments vol.38, pp.3, 2017, https://doi.org/10.1080/09593330.2016.1190408
  8. Sediment Remediation by Microbial Fuel Cells and Effect of Vertical Position of Anode Buried in Sediment vol.40, pp.2, 2017, https://doi.org/10.2965/jswe.40.51
  9. Effect of Temperature Variation on the Performance of Microbial Fuel Cells vol.5, pp.12, 2017, https://doi.org/10.1002/ente.201700277
  10. Exploratory study on improving the benthic environment in sediment by sediment microbial fuel cells pp.1735-2630, 2017, https://doi.org/10.1007/s13762-017-1418-8
  11. Optimizing the electrode surface area of sediment microbial fuel cells vol.8, pp.45, 2018, https://doi.org/10.1039/C8RA05069D
  12. Alteration of sediment organic matter in sediment microbial fuel cells vol.158, pp.1, 2008, https://doi.org/10.1016/j.envpol.2009.07.022
  13. Performance of a Microbial Fuel Cell using a Magnet Attached Cathode vol.31, pp.6, 2008, https://doi.org/10.5012/bkcs.2010.31.6.1729
  14. Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells vol.109, pp.None, 2008, https://doi.org/10.1016/j.biortech.2011.06.039
  15. Responses of Aromatic-Degrading Microbial Communities to Elevated Nitrate in Sediments vol.49, pp.20, 2008, https://doi.org/10.1021/acs.est.5b03442
  16. Acclimated sediment microbial fuel cells from a eutrophic lake for the in situ denitrification process vol.6, pp.83, 2016, https://doi.org/10.1039/c6ra16510a
  17. Enhanced bioremediation of heavy metals and bioelectricity generation in a macrophyte-integrated cathode sediment microbial fuel cell (mSMFC) vol.26, pp.26, 2008, https://doi.org/10.1007/s11356-019-05874-9
  18. Bioelectricity generation and biofilm analysis from sewage sources using microbial fuel cell vol.255, pp.None, 2019, https://doi.org/10.1016/j.fuel.2019.115815
  19. The oil removal and the characteristics of changes in the composition of bacteria based on the oily sludge bioelectrochemical system vol.10, pp.1, 2008, https://doi.org/10.1038/s41598-020-72405-9
  20. Effect of 3D Carbon Electrodes with Different Pores on Solid-Phase Microbial Fuel Cell vol.34, pp.12, 2008, https://doi.org/10.1021/acs.energyfuels.0c03591
  21. The influence of organic pollutant load and external resistance on the performance of a solid phase microbial fuel cell fed orange peel wastes vol.40, pp.5, 2008, https://doi.org/10.1002/ep.13667