# Absolute Configuration of a Diterpene with an Acyclic 1,2-Diol Moiety and Cytotoxicity of Its Analogues from the Aerial Parts of Aralia cordata 

IkSoo Lee, HongJin Kim, UiJung Youn, Byung Sun Min, ${ }^{\dagger}$ Hyun Ju Jung, ${ }^{\ddagger}$ Jae Kuk Yoo, ${ }^{\text {8 }}$ Rack Seon Seong," and KiHwan Bae*<br>College of Pharmacy, Chungnam National Lnmersity, Daejeon 305-764, Korea. E-mail: baekhacmu.ackr College of Pharmacv, Catholic Unversity of Daegu, Kvungbook 712-702, Korea<br>${ }^{*}$ Deparment of Oriental Pharmacy, Honhwang Linversity of Iksan, Jeonbuk 570-749, Korea<br>${ }^{\text {SH}}$ Han Kook Shin Yak, Joongsan-ri, Yangchon-mpeon, Yonsan, Chungnam 320-854, Korea<br>${ }^{*}$ Korea Food and Drug Administration, Seoul 122-704, Korea<br>Recemed July 4, 2008

Key Words : Aralia cordata. Diterpene. Dimolybdenum tetraacetate. Circular dichroism

Aralia cordata Thumb. (Araliaceae) is a peremnial herb which is distributed in Korea. China and Japan. Traditionally, the root of $A$. cordata has been widely used to treat rheumatism. lumbago and lameness in Japan. ${ }^{1}$ Previous phytochenical investigations on this plant have reported the isolation of several kinds of diterpenes having pimarane and kaurane skeletons. ${ }^{2}$ In our current phytochemical investigation on the aerial parts of this plant has led to the isolation of a new ent-pimarane diterpene, ent-15S, 16 -dihyroxypimar8 (14)-en-19-oic acid (1). together with three known diterpenes, ent-pinar-8(14).15-dien-19-oic acid (2) ${ }^{\frac{3}{3}}$, ent-16 $\alpha$ -hydroxykauran-19-oic acid (3) ${ }^{+}$and ent-kaur-16-en-19-oic acid $(t)^{5}$ (Figure 1). Although the structure of compound 1 was reported previously. ${ }^{6}$ there has been no report of the isolation from natural sources. Moreover, there has been no report on the determination of the absolute configuration of the 1.2 -dihydroxyethyl moiety in 1 . Therefore, in order to deduce the absolute configuration of this moiety. a CD method employing dimolybdenum tetraacetate $\left[\mathrm{Mo}_{2}(\mathrm{AcO})_{4}\right]$ developed by Snatzke and Frelek ${ }^{7}$ was applied to 1 . The present paper reports the isolation and structure elucidation of isolated compounds (1-4) from the aerial parts of $A$.





Figure 1. Structures of compounds $1-4$ isolated from the aenal parts of $A$. condata and key HMBC correlations $(\mathrm{H} \rightarrow \mathrm{C})$ in 1 .
cordata and their cytotoxicity. as well as the determination of the absolute configuration of an acyclic 1.2-diol moiety in 1 using Snatzke's method.

Compound 1 was obtained as a white amorphous powder with a negative optical rotation. $[\alpha]_{D}^{\frac{23}{3}}-39.5^{\circ}(c 0.4, \mathrm{MeOH})$. The molecular fommula of 1 was found to be $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$. on

Table 1. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$. ${ }^{13} \mathrm{C}(75 \mathrm{MHz})$ and HMBC data for compound $1^{a}$ (in $C D_{3} O D$ )

| Carbon | ${ }^{13} \mathrm{C}$ | ${ }^{1} \mathrm{H}(\mathrm{J}$ in Hz$)$ | $\mathrm{HMBC}(\mathrm{H} \rightarrow \mathrm{C})$ |
| :---: | :---: | :---: | :---: |
| 1 | 40.6 | 1.02 ddd ( $3.0,3.6,13.5$ ) | 2, 3, 5, 10, 20 |
|  |  | 1.62 m |  |
| 2 | 21.0 | 1.56 m | 1,3,4,10 |
|  |  | 1.80 m |  |
| 3 | 39.5 | 0.82 m | 1,2,4,5,19 |
|  |  | 1.85 m |  |
| 4 | 45.1 |  |  |
| 5 | 57.6 | $1.10 \mathrm{dd}(2.4,13.2)$ | 4, 6, 7, 9, 10, 18, 19, 20 |
| 6 | 26.2 | 1.32 m |  |
|  |  | 1.56 m |  |
| 7 | 38.3 | 2.15 m | 5,6,8,9,14 |
|  |  | 2.29 ddd (1.8.4.2, 13.5) |  |
| 8 | 138.3 |  |  |
| 9 | 50.9 | 1.61 m | $5,8,10,11,12,14,20$ |
| 10 | 40.8 |  |  |
| 11 | 20.0 | 1.45 m | 8,9,12,13 |
|  |  | 1.48 m |  |
| 12 | 32.1 | 0.84 m | $9,11,13,14,17$ |
|  |  | 1.89 m |  |
| 13 | 38.5 |  |  |
| 14 | 130.0 | 5.36 s | $7,9,12,13,15,17$ |
| 15 | 80.5 | 3.50 dd (2.1, 8.7) | 12, 13, 14, 16, 17 |
| 16 | 64.6 | $3.42 \mathrm{dd}(8.7,10.5)$ | 13, 15 |
|  |  | $3.68 \mathrm{dd}(2.1,10.5)$ |  |
| 17 | 23.9 | 0.90 s | 12,13,15 |
| 18 | 29.7 | 1.20 s | 3,4,5,19 |
| 19 | 181.6 |  |  |
| 20 | 15.0 | 0.76 s | 1, 5, 9, 10 |

[^0]the basis of a quasimolecular ion peak at $m z 337.2380$ $[\mathrm{M}+\mathrm{H}]^{+}$in the HRFABMS. Its IR spectrum exhibited absorption bands for hydroxyl group ( $3450 \mathrm{~cm}^{-1}$ ). carbonyl group ( $1695 \mathrm{~cm}^{-1}$ ) and trisubstituted double bond ( 1640 and $842 \mathrm{~cm}^{-1}$ ). The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 displayed signals for an olefinic proton at $\delta 5.36(\mathrm{~s})$, carbinolic protons at $\delta 3.68$ (dd. $J=2.1 .10 .5 \mathrm{~Hz}) .3 .50(\mathrm{dd}, J=2.1 .8 .7 \mathrm{~Hz})$ and 3.42 (dd. $J=8.7 .10 .5 \mathrm{~Hz}$ ) and three tertiary methyl protons at $\delta$ 1.20, 0.90 and 0.76 (Table 1). The ${ }^{13} \mathrm{C}$ NMR and DEPT spectra revealed 20 carbon signals consisting of three methyls, eight methylenes, four methines and five quaternary carbons including a carboxyl carbon at $\delta 181.6$ (Table 1). On the basis of the above observations. the presence of a pimarane diterpene skeleton could be inferred. ${ }^{8.11}$ In addition. the olefinic carbon signals at $\delta 138.3$ and 130.0 were indicative for a $\mathrm{C}-8 / \mathrm{C}-14$ double bond in the ent-pimarane-type structure. ${ }^{11.12}$ Furthernore. a major fragment ion peak at $\mathrm{m} / \mathrm{z} 275$ $\left[\mathrm{M}-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}\right]^{+}$in the EIMS spectrum indicated that 1 is an ent-pina- $8(14)$-ene derivative having a 1.2 -dihydroxyethyl side-chain. The presence of a partial structure of 1,2-dilydroxyethyl moiety in $\mathbf{1}$ was further supported by the ${ }^{1} \mathrm{H} \cdot{ }^{1} \mathrm{H}$ COSY experiment through the cross-peaks for the geminal coupling of the hydroxymethylene protons at $\delta 3.40$ and $3.68\left(\mathrm{H}_{2}-16\right)$, and for both of then with the proton at $\delta$ $3.50(\mathrm{H}-15)$. The linkage position of a 1.2 -dihydrosyethyl moiety was determined to be $\mathrm{C}-13$ on the basis of the HMBC cross-peaks of $\mathrm{H}-15(\delta 3.49)$ with C-17 $(\delta 23.9)$, C$12(\delta 32.1), \mathrm{C}-13(\delta 38.5) . \mathrm{C}-16(\delta 64.6)$ and $\mathrm{C}-14(\delta 130.0)$ (Figure 1).
The relative stereochemistry of the chiral groups on the rings in $\mathbf{1}$ can be determined through NMR spectra, owing to the structural rigidity. On the contrary, the sidearm. 1,2dilyydroxyethyl moiety. in 1 is flexible and attached to the rest of the molecule through a quatennary carbon. which prevents the use of NMR teclniques. Furthermore, the UVvis spectral region of acyclic 1,2-diols below about 190 nm prevents the use of chiroptical methods ${ }^{13}$ for the direct analysis of their absolute configuration. unless a chemical derivatization is carried out on the chiral substrate by addition of a suitable chromophoric group. A possible way to solve this problem is application of a CD (circular dichroism) method employing dimolybdenum tetraacetate $\left[\mathrm{Mo}_{2}(\mathrm{AcO})_{4}\right]$ as an auxiliary chromophore. which is one of the most useful method for rapid and effective determination of the absolute configuration of acyclic 1.2 -diols. ${ }^{7}$ In this method, the chiral substrate acts as a ligand of the metal center through ligation to the $\mathrm{Mo}^{2-}$ core. ${ }^{7}$ As a consequence to the ligation. the conformational freedom of the flexible molecule is either very much reduced or totally restricted. which makes possible the absolute configurational assignment of the acyclic 1.2 -diol moiety on the basis of the chiroptical data. independently of the rest of the molecule.
In order to deduce the absolute configuration of an acyclic 1.2-diol moiety in 1. a CD method employing dimolybdenum tetraacetate $\left[\mathrm{Mos}(\mathrm{AcO})_{4}\right]$ developed by Snatzke and Frelek $^{7}$ was applied to 1 . and obtained its $C D$ spectrum in the region of $550-250 \mathrm{~nm}$. According to the rule proposed by


Figure 2. CD spectrum of compound 1 mD DMSO solution of $\mathrm{Mo}_{2}(\mathrm{AcO})_{4}$. The S -avis represents the wavelength and y -avis represents molar circular dichroism ( $\Delta \varepsilon^{\prime}, \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$ ). A series of four bands above 250 nm (the absorption region of Dimoly bdenum tetraacetate) is apparent and Roman numerals (II, III, IV, V) refer to Snatzke's band nomenclature. ${ }^{\text {²b }}$

Snatzke. the sign of the CD band around 305 nm . which has been assigned to a metal-to-ligand charge-transfer transition, ${ }^{7 / 4}$ correlates with the absolute configuration of the acyclic 1.2 -diol moiety in the ligating structure. ${ }^{7 t}$ The rule states that a complex of a " $R$ " or " $R, R$ " 1,2 -diol with dimolybdenum tetraacetate always gives rise to a negative $C D$ band around 305 nm , whereas a complex having a " 5 " or " $S, 5$ " 1,2-diol always gives rise to a positive $C D$ band around $305 \mathrm{~nm} .{ }^{76}$ Thus, a positive CD band observed around 305 nm ("band IV') in the CD spectrun of 1 shown in Figure 2 leads to the assigmment of the $S$-configuration for the chiral center (C-15) in the 1.2-dihydroxyethyl moiety. On the basis of the above evidences, the structure of compound 1 was determined to be ent-15S,16-dihyroxypimar-8(14)-en-19-oic acid.

Previous biological study on A. cordata has shown that some diterpenes isolated from $A$. cordata exhibited cytotoxic effects against human tumor cells. ${ }^{14}$ Thus, all the isolates (14) were evaluated for in vitro cytotoxicity against SK-OV-3 (human ovarian cancer). HL-60 (human promyelocytic leukemia), B16F10 (murine melanoma) and L1210 (murine leukemia) using the MTT assay method ${ }^{15}$ and the results are presented in Table 2. Of the pimarane-type ( $\mathbf{1}$ and $\mathbf{2}$ ) and

Table 2. Cytotoxicity of compounds 1-4 from the aerial parts of . A. cordata

| Compound | IC $50(\mathrm{fg} / \mathrm{mL} \varphi$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | SK-OV-3 | HL-60 | B16F10 | L1210 |
| 1 | $>30$ | $>30$ | $>30$ | $>30$ |
| 2 | $26.2 \pm 1.2$ | $29.4 \pm 0.8$ | $24.4 \pm 1.4$ | $20.1 \pm 1.2$ |
| 3 | $>30$ | $>30$ | $>30$ | $>30$ |
| 4 | $20.1 \pm 1.3$ | $22.6 \pm 1.5$ | $18.9 \pm 0.9$ | $15.8 \pm 0.8$ |
| Adriamy cin $^{t}$ | $2.5 \pm 0.2$ | $2.8 \pm 0.2$ | $1.7 \pm 0.1$ | $1.4 \pm 0.1$ |

[^1]kaurane-type diterpenes ( $\mathbf{3}$ and 4 ) tested, compounds 2 and $\downarrow$ having an exomethylene group showed a moderate cytotoxicity against all the cell lines tested, with $\mathrm{IC} \mathrm{C}_{50}$ values ranging from 20.1 to $29.4 \mu \mathrm{~g} / \mathrm{mL}$ and from 15.8 to $22.6 \mu \mathrm{~g} /$ mL , respectively, which was well accorded with the previous study. ${ }^{1+}$ Although compound $\mathbf{3}$ was known to exhibit a selective cytotoxicity against some cell lines such as 9PS (a chemically induced murine lymphocitic leukemia), A-549 (human lung carcinoma) and HT-29 (human colon adenocarcinoma), ${ }^{16}$ it did not show any significant cytotoxicity against all the cell lines tested.

## Experimental Section

General Experimental Procedures. Melting point was measured on an Electrothemal apparatus. Optical rotation was measured in MeOH on a JASCO DIP- 370 digital polarimeter. IR spectrum was recorded on a JASCO 100 IR spectrometer. CD spectrom was recorded in DMSO on a JASCO J-715 spectrometer. HRFABMS and EIMS data were recorded on JEOL JMS-DX 300 and Hewlett-Packard 5989 B spectrometers. respectively. ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ( 75 MHz ) spectra were recorded on a Bruker DRX300 spectrometer with tetramethylsilane (TMS) as internal standard. Two-dimensional (2D) NMR experiments ( ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY. HMQC and HMBC) were recorded on a Bruker Avance 600 spectrometer.

Plant Materials. The aerial parts of $A$. cordotor were collected in November 2004. in Daejeon. Korea and identified by Prof. KiHwan Bae. A voucher specinen (CNU 1499) has been deposited in the herbarium at the College of Pharmacy. Chungnam National University. Daejeon. Korea

Extraction and Isolation. The dried aerial parts of $A$. cordata $(+\mathrm{kg})$ were extracted three times with $\mathrm{EtOH}(50 \mathrm{~L} \times$ 3) at room temperature for 3 days, filtered and concentrated to yield an EtOH extract ( 300 g ). The EtOH extract was suspended in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~L})$ and then partitioned successively with $n$-hexane ( $2 \mathrm{~L} \times 3$ ). EtOAc $(2 \mathrm{~L} \times 3)$ and $n-\mathrm{BuOH}(2 \mathrm{~L}$ $\times 3)$ to afford hexane- $(85 \mathrm{~g})$. EtOAc- $(63 \mathrm{~g})$ and $\mathrm{BuOH}-$ soluble fractions ( 82 g ). respectively:

The hexane-soluble fraction ( 85 g ) was subjected to silica gel columun chromatography ( $80 \times 10.0 \mathrm{~cm}$ ) eluting with a stepwise gradient of $n$-hexane-acetone ( $100: 1 \rightarrow 1: 2$ ) to afford four fractions (A-D). Fraction A was rechromatographed on a silica gel colunn ( $50 \times 5.0 \mathrm{~cm}$ ) using $n$ -hexane-acetone ( $50: 1$ ) to give compound 2 ( 1000 mg ).

The EtOAc-soluble fraction ( 63 g ) was subjected to silica gel column chromatography ( $80 \times 10.0 \mathrm{~cm}$ ) eluting with a stepwise gradient of $\mathrm{CHCl}_{3}-\mathrm{MeOH}(100: 1 \rightarrow 1: 2)$ to afford five fractions (E-I). Fraction $F$ was rechromatographed on a silica gel column ( $50 \times 3.5 \mathrm{~cm}$ ) using $n$-hexane-acetone ( $20: 1 \rightarrow 15: 1$ ) to give compounds 3 ( 20 mg ) and 4 ( 15 mg ). Fraction G was further purified by silica gel columu chromatography ( $50 \times 2.5 \mathrm{~cm}$ ) using $n$-hexane-acetone ( $10: 1$ ) to afford compound $1(130 \mathrm{mg})$.
ent-15S,16-Dihyroxypimar-8(14)-en-19-oic acid (1):

White amorphous powder; mp: $211-213^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{]^{5}}-39.5^{\circ}$ (c $0.4, \mathrm{MeOH}) ; \mathrm{IR} V_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3450,2935$. 1695. 1640 , 1460. 842: HRFABMS $m z 337.2380[\mathrm{M}+\mathrm{H}]^{+}$(calc. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{H}^{+} .337 .2379$ ): EIMS $m z$ (rel. int.) $336[\mathrm{M}]^{-}$(5). 321 (27), 298 (15). 281 (17). 275 (88). 166 (29), 134 (37). 121 (100): ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are listed in Table 1 .
ent-Pimar-8(14),15-dien-19-oic acid (2): Colorless needles: mp: $165-166^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{55}-120.2^{\circ}\left(c 0.7 . \mathrm{CHCl}_{3}\right)$; IR $v_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1} ; 3400$. 1690. 1460; FABMS mz 303 $[\mathrm{M}+\mathrm{H}]^{+}:{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in accordance with published data. ${ }^{3}$
ent-16 $\alpha$-Hydroxykauran-19-oic acid (3): White amorphous powder; mp: $275-277^{\circ} \mathrm{C}$ : $[\alpha]_{\mathrm{D}}^{25}-104.4^{\circ}$ (c) 1.0 , $\mathrm{MeOH})$ : IR $v_{\text {max }}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3460$. 1700; FABMS $m=321$ $[\mathrm{M}+\mathrm{H}]^{+}:{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in accordance with published data. ${ }^{4}$
ent-Kaur-16-en-19-oic acid (4). White amorphous powder; mp: $178-180^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-110.5^{\circ}(c 1.0 . \mathrm{MeOH})$ : IR $v_{\text {max }}$ (KBr) $\mathrm{cm}^{-1}: 3450,1690$. 1470: FABMS mz $303[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were in accordance with published data. ${ }^{5}$

Determination of the absolute configuration of an acyclic 1,2-diol moiety in 1 using Snatzke's method. Dimolybdenum tetraacetate $\left[\mathrm{Mo}_{2}(\mathrm{AcO})_{4}\right]$ was purchased from Fluka. DMSO. spectroscopy grade, was obtained from Fluka. According to the published procedure. ${ }^{7}$ about l:l diol-tomolybdenum mixture was prepared using $0.7 \mathrm{mg} / \mathrm{mL}$ of a chiral substrate in DMSO. Soon after mixing. the CD spectrum was recorded and its evolution monitored until stationary ( $30-40 \mathrm{~min}$ ).

Cytotoxicity assay. The cancer cell lines (SK-OV-3, HL60 , Bl6F10 and L1210) were maintained in RPMI 1640 which included L-glutamine (JBI) with $10 \%$ FBS (JBI) and $2 \%$ penicillin-streptomycin (GIBCO). Cells were cultured at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}$ 2 incubator. Cytotoxicity was measured by a modified Microculture Tetrazolium (MTT) assay. ${ }^{15}$ Viable cells were seeded in the growth medium ( $180 \mu \mathrm{~L}$ ) into 96 well microtiter plates ( $1 \times 10^{+}$cells per each well) and incubated at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ incubator. The test sample was dissolved in DMSO and adjusted to final sample concentrations ranging from 1.875 to $30 \mu \mathrm{~g} / \mathrm{mL}$ by diluting with the growth medium. Each sample was prepared in triplicate. The final DMSO concentration was adjusted to $<0.1 \%$. After standing for $2 \mathrm{~h} .20 \mu \mathrm{~L}$ of the test sample was added to each well. The same volume of DMSO was added to the control group well. Forty-eight hours after the test sample was added. $20 \mu \mathrm{~L}$ MTT was also added to the each well (final concentration, $5 \mu \mathrm{~g} / \mathrm{mL}$ ). Two hours later, the plate was centrifuged for 5 minutes at 1500 rpm , the medium was then removed and the resulting formazan crystals were dissolved with $150 \mu \mathrm{~L}$ DMSO. The optical density (O.D.) was measured at 570 nm using a Titertek microplate reader (Multiskan MCC/340. Flow). The $\mathrm{IC}_{50}$ value is defined as the concentration of sample to reduce a $50 \%$ of absorbance relative to the vehicle-treated control.

Acknowledgments. We are grateful to Korea Basic Science Institute (KBSI) for supplying the NMR spectra.

## References

1. Perry. L. M. Medicinal Plants of East and Southeast Asia: The MIT Press: Cambridge, 1980.
2. Mihashi, S.: Yanagisawa, I.: Tanaka, O. Shibata, S. Tefrahedron Lett. 1969. 21. 1683
3. Sy. L. K.: Brown. G. D. J. Nat Prod. 1998. 61. 907
4. Cai. X. F.: Shen. G.: Dat. N. T.: Kang. O. H.: Lee. Y. M.: Lee. J. J.: Kim. Y. H. Arch. Phom. Res. 2003. 9.731
5. Tanaka. O.: Mihashi. S.: Yanagisawa, I.: Niaido, T.: Shibata, S. Tetrahedrof 1972. 28.4523
6. Sam, N.: San-Miguel, B. Arreguy: Taran, M.: Delmond, B. Tetrahedron 1991. 47.9187.
7. (a) Snatzke. G.: Wagner. U.: Wolfì. H. P. Tetrahedron 1981. 37. 349. (b) Frelek. J.: Ikekawa. N.: Takatsuto. S.: Snatzke. G. Chiralin 1997, 9. 578 . (c) Frelek. J.: Geiger. M.: Voelter. W. Curf. Org. Chem. 1999 3. 117.
8. Liu. K.: Roder. E. Plamta Med 1991. 57. 395.
9. Jiang. X.: Yurbao. M.: Yulong. X. Phutochemistry 1992. 31.917.
10. Ma. G. X.: Yin. L.: Wang. I. S.: Pan. Y.: Guo. L. W. Pharm. Bioh 1998. 36, 66.
11. Luo. X. D.; Wu. S. H.; Ma, Y. B.; Wu. D. G. Phytochemisty 2001. 57. 131.
12. Cambie. R. C.: Burfitt. I. R.: Goodwin. T. E.: Werkert. E. J. Org Chent 1975. 10.3789
13. (a) Mason. S. F. Molecular Optical Activity and the Chiral Discrimination; Cambridge University Press: Cambridge, 1982 (b) Rodger, A.: Norden. B. Circular Dichoism \& Linear Dichroism: Oxford University Press: Oxford. 1997.
14. Ryu. S. Y.: Ahtı. J. W.: Hanı. Y. N.: Harı. B. H.: Kim. S. H. Arch Pharn. Res. 1996. 19. 77.
15. Mosmanni. T. J. Inmumol. Aethods 1983. 65. 55
16. Hui. Y.: Chang. C.; Smith, D. L.; MeLaughlin, J. L. Pham. Res. 1990. $7,376$.

[^0]:    ${ }^{\circ}$ Assignments made on the basis of DEPT. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC and HMBC experiments.

[^1]:    ${ }^{a}$ The $\mathrm{IC}_{5 n}$ value is defined as the concentration of sample to reduce a 5()$^{\circ}$ of absorbance relative to the velicle-treated control and the values represent the mean $=S D$ of three individual experiments. ${ }^{\text {K }}$ Positive control.

