DOI QR코드

DOI QR Code

Determination of Strongly Interacting Spin Exchange Paths in Cu2(O3PCH2PO3) on the Basis of Spin Dimer Analysis

  • Bae, Hyun-Woo (Department of Chemistry and Research Institute of Basic Science of Kyung Hee University) ;
  • Koo, Hyun-Joo (Department of Chemistry and Research Institute of Basic Science of Kyung Hee University)
  • Published : 2008.01.20

Abstract

The magnetic properties of the organic/inorganic hybrid copper-methylenediphosphonate, Cu2(O3PCH2PO3) were examined by performing the spin dimer analysis based on the extended Hckel tight binding method. In Cu2(O3PCH2PO3) the CuO3 chains made up of edge-sharing CuO5 square pyramidal units are inter-linked by O-P-O bridges. The Cu-O-Cu superexchange interactions of the CuO3 chains are negligibly weak compared with the Cu-O…O-Cu super-superexchange interactions that occur between the CuO3 chains. The spin exchange interactions of Cu2(O3PCH2PO3) are dominated by three super-superexchange interactions, which leads to a three-dimensional antiferromagnetic spin lattice. The strongest spin exchange interactions form isolated spin dimers, which suggests that, to a first approximation, the magnetic properties can be described in terms of an isolated spin dimer model.

Keywords

References

  1. Wang, J. D.; Clearfield, A.; Peng, G.-Z. Mater. Chem. Phys. 1993, 35, 208 https://doi.org/10.1016/0254-0584(93)90133-7
  2. Stein, E.; Clearfield, A.; Subramanian, M. A. Solid State Ion 1996, 83, 113 https://doi.org/10.1016/0167-2738(95)00215-4
  3. Vermeulen, L. A.; Snover, J. L.; Sapochak, L. S.; Thompson, M. E. J. Am. Chem. Soc. 1993, 115, 11767 https://doi.org/10.1021/ja00078a015
  4. Burkholder, E.; Golub, V. O.; O'Connor, C. J.; Zubieta, J. Inorg. Chim. Acta 2002, 340, 127 https://doi.org/10.1016/S0020-1693(02)01078-2
  5. Whangbo, M.-H.; Koo, H.-J.; Dai, D. J. Solid State Chem. 2003, 176, 417 https://doi.org/10.1016/S0022-4596(03)00273-1
  6. Whangbo, M.-H.; Dai, D.; Koo, H.-J. Solid State Sci. 2005, 7, 827 https://doi.org/10.1016/j.solidstatesciences.2005.02.009
  7. Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2001, 40, 2169
  8. Koo, H.-J.; Whangbo, M.-H.; VerNooy, P. D.; Torardi, C. C.; Marshall, W. J. Inorg. Chem. 2002, 41, 4664 https://doi.org/10.1021/ic020249c
  9. Whangbo, M.- H.; Koo, H.-J.; Dai, D.; Jung, D. Inorg. Chem. 2003, 42, 3898 https://doi.org/10.1021/ic020551l
  10. Koo, H.-J.; Whangbo, M.-H.; Lee, K.-S. Inorg. Chem. 2003, 42, 5932 https://doi.org/10.1021/ic030115e
  11. Koo, H.-J.; Dai, D.; Whangbo, M.-H. Inorg. Chem. 2005, 44, 4359 https://doi.org/10.1021/ic050159i
  12. Belik, A. A.; Azuma, M.; Matsuo, A.; Whangbo, M.-H.; Koo, H.-J.; Kikuchi, J.; Kaji, T.; Okubo, S.; Ohta, H.; Kindo, K.; Takano, M. Inorg. Chem. 2005, 44, 6632 https://doi.org/10.1021/ic051079h
  13. Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2006, 45, 4440 https://doi.org/10.1021/ic060392w
  14. Koo, H.-J.; Lee, C.; Wilson-Short, G. B.; Dai, D.; Whangbo, M.-H. Inorg. Chem. 2007, 46, 2498 https://doi.org/10.1021/ic061897p
  15. Goodenough, J. B. Magnetism and the Chemical Bond; Wiley: Cambridge, MA, 1963
  16. Dai, D.; Whangbo, M.-H.; Koo, H.-J.; Rocquefelte, X.; Jobic, S.; Villesuzanne, A. Inorg. Chem. 2005, 44, 2407 https://doi.org/10.1021/ic048431w
  17. Whangbo, M.-H.; Koo, H.-J.; Lee, K.-S. Solid State Commun. 2000, 114, 77
  18. Koo, H.-J.; Whangbo, M.-H. J. Solid State Chem. 2000, 151, 96 https://doi.org/10.1006/jssc.2000.8627
  19. Koo, H.-J.; Lee, K.-S.; Whangbo, M.-H. Inorg. Chem. 2006, 45, 10743 https://doi.org/10.1021/ic061773c
  20. Kahn, O. Molecular Magnetism; VCH Publisher: Weinheim, 1993
  21. Hay, P. J.; Thibeault, J. C.; Hoffmann, R. J. Am. Chem. Soc. 1975, 97, 4884 https://doi.org/10.1021/ja00850a018
  22. Hoffmann, R. J. Chem. Phys. 1963, 39, 1397 https://doi.org/10.1063/1.1734456
  23. http://chvamw.chem.ncsu.edu/
  24. Clementi, E.; Roetti, C. Atomic Data Nuclear Data Tables 1974, 14, 177 https://doi.org/10.1016/S0092-640X(74)80016-1
  25. Bleaney, B.; Bowers, K. D. Proc. R. Soc. London, Ser. A 1952, 214, 451 https://doi.org/10.1098/rspa.1952.0181
  26. Ueda, Y. Chem. Mater. 1998, 10, 2653 https://doi.org/10.1021/cm980215w
  27. Johnston, D. C.; Kremer, R. K.; Troyer, M.; Wang, X.; Klümper, A.; Bud'ko, S. L.; Panchula, A. F.; Canfield, P. C. Phys. Rev. B 2000, 61, 9558 https://doi.org/10.1103/PhysRevB.61.9558
  28. Vasil'ev, A. N.; Markina, M. M.; Popova, E. A. Low Temp. Phys. 2005, 31, 203 https://doi.org/10.1063/1.1884423
  29. Nakajima, T.; Mitamura, H.; Ueda, Y. J. Phys. Soc. Jpn 2006, 75, 54706 https://doi.org/10.1143/JPSJ.75.054706

Cited by

  1. A Novel Three-Dimensional Copper(II) 1,2-Ethylenediphosphonate Framework with Channel-like Voids vol.642, pp.19, 2016, https://doi.org/10.1002/zaac.201600248
  2. Spin Exchange Coupling in Dimethoxo-Bridged Dichromium(III) Complexes: A Density Functional Theory Study vol.29, pp.5, 2008, https://doi.org/10.5012/bkcs.2008.29.5.963
  3. Two-leg spin ladder model for Ag2VOP2O7 from mapping analysis based on first principles density functional calculations vol.149, pp.21, 2008, https://doi.org/10.1016/j.ssc.2009.03.017
  4. Determination of Strongly Interacting Spin Exchange Path and Spin Lattice Model of (VO)2(H2O){O3P-(CH2)3-PO3}ㆍ2H2O on the vol.31, pp.6, 2008, https://doi.org/10.5012/bkcs.2010.31.6.1665
  5. Tellurium-bridged two-leg spin ladder in $ \mathrm{Ba}_{2}\mathrm{CuTeO}_{6}$ vol.93, pp.10, 2016, https://doi.org/10.1103/physrevb.93.104401