DOI QR코드

DOI QR Code

RNase P-dependent Cleavage of Polycistronic mRNAs within Their Downstream Coding Regions in Escherichia coli

  • Lee, Jung-Min (Department of Chemistry and Center for Molecular Design and Synthesis, KAIST) ;
  • Kim, Yool (Department of Chemistry and Center for Molecular Design and Synthesis, KAIST) ;
  • Hong, Soon-Kang (Department of Fire Service Administration, Chodang University) ;
  • Lee, Young-Hoon (Department of Chemistry and Center for Molecular Design and Synthesis, KAIST)
  • Published : 2008.06.20

Abstract

M1 RNA, the catalytic subunit of Escherichia coli RNase P, is an essential ribozyme that processes the 5' leader sequence of tRNA precursors (ptRNAs). Using KS2003, an E. coli strain generating only low levels of M1 RNA, which showed growth defects, we examined whether M1 RNA is involved in polycistronic mRNA processing or degradation. Microarray analysis of total RNA from KS2003 revealed six polycistronic operon mRNAs (acpP-fabF, cysDNC, flgAMN, lepAB, phoPQ, and puuCBE) showing large differences in expression between the adjacent genes in the same mRNA transcript compared with the KS2001 wild type strain. Model substrates spanning an adjacent pair of genes for each polycistronic mRNA were tested for RNase P cleavage in vitro. Five model RNAs (cysNC, flgMN, lepAB, phoPQ, and puuBE) were cleaved by RNase P holoenzyme but not by M1 RNA alone. However, the cleavages occurred at non-ptRNA-like cleavage sites, with much less efficiency than the cleavage of ptRNA. Since cleavage products generated by RNase P from a polycistronic mRNA can have different in vivo stabilities, our results suggest that RNase P cleavage may lead to differential expression of each cistron.

Keywords

References

  1. Robertson, H. D.; Altman, S.; Smith, J. D. J. Biol. Chem. 1972, 247, 5243
  2. Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. Cell 1983, 35, 849 https://doi.org/10.1016/0092-8674(83)90117-4
  3. Bothwell, A. L.; Garber, R. L.; Altman, S. J. Biol. Chem. 1976, 251, 7709
  4. Bourgaize, D. B.; Fournier, M. J. Nature 1987, 325, 281 https://doi.org/10.1038/325281a0
  5. Komine, Y.; Kitabatake, M.; Yokogawa, T.; Nishikawa, K.; Inokuchi, H. Proc. Natl. Acad. Sci. USA 1994, 91, 9223 https://doi.org/10.1073/pnas.91.20.9223
  6. Hartmann, R. K.; Heinrich, J.; Schlegl, J.; Schuster, H. Proc. Natl. Acad. Sci. USA 1995, 92, 5822 https://doi.org/10.1073/pnas.92.13.5822
  7. Alifano, P.; Rivellini, F.; Piscitelli, C.; Arraiano, C. M.; Bruni, C. B.; Carlomagno, M. S. Genes. Dev. 1994, 8, 3021 https://doi.org/10.1101/gad.8.24.3021
  8. Li, Y.; Altman, S. Proc. Natl. Acad. Sci. USA 2003, 100, 13213 https://doi.org/10.1073/pnas.2235589100
  9. Schedl, P.; Primakoff, P. Proc. Natl. Acad. Sci. USA 1973, 70, 2091 https://doi.org/10.1073/pnas.70.7.2091
  10. Kim, K. S.; Sim, S.; Ko, J. H.; Lee, Y. J. Biol. Chem. 2005, 280, 34667 https://doi.org/10.1074/jbc.M505005200
  11. Kim, K. S.; Ryoo, H.; Lee, J. H.; Kim, M.; Kim, T.; Kim, Y.; Han, K.; Lee, S. H.; Lee, Y. Bull. Korean Chem. Soc. 2006, 27, 699 https://doi.org/10.5012/bkcs.2006.27.5.699
  12. Cho, B. Bull. Korean Chem. Soc. 2007, 28, 689 https://doi.org/10.5012/bkcs.2007.28.4.689
  13. Park, B. H.; Choi, Y. N.; Park, J. W.; Sim, S.; Gil, M. C.; Kim, S.; Kim, M.; Lee, Y. Mol. Cells 1998, 8, 96
  14. Zuker, M. Nucleic Acids Res. 2003, 31, 3406 https://doi.org/10.1093/nar/gkg595
  15. Blattner, F. R.; Plunkett, G., 3rd; Bloch, C. A.; Perna, N. T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J. D.; Rode, C. K.; Mayhew, G. F.; Gregor, J.; Davis, N. W.; Kirkpatrick, H. A.; Goeden, M. A.; Rose, D. J.; Mau, B.; Shao, Y. Science 1997, 277, 1453 https://doi.org/10.1126/science.277.5331.1453

Cited by

  1. Essential is Not Irreplaceable: Fitness Dynamics of Experimental E. coli RNase P RNA Heterologous Replacement vol.79, pp.3-4, 2014, https://doi.org/10.1007/s00239-014-9646-8
  2. Effects of Overexpression of C5 Protein on rnpB Gene Expression in Escherichia coli vol.30, pp.4, 2008, https://doi.org/10.5012/bkcs.2009.30.4.791
  3. Effects of Signal Peptide Peptidase A on Growth Inhibition by Overexpression of C5 Protein in Escherichia coli vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1891
  4. Degradation of Stable RNA: Identification of Degradation Intermediates in M1 RNA-Overexpressing Cells vol.30, pp.11, 2008, https://doi.org/10.5012/bkcs.2009.30.11.2809
  5. Implication of RNases PH in Turnover of M1 RNA vol.31, pp.7, 2008, https://doi.org/10.5012/bkcs.2010.31.7.2081
  6. Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics vol.49, pp.8, 2008, https://doi.org/10.1093/nar/gkab242