DOI QR코드

DOI QR Code

Glass Transition Behavior of Dendritic Polymers Containing Mobile Aliphatic Polyether Cores and Glassy Peripheral Polystyrenes

  • Song, Jie (Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Cho, Byoung-Ki (Department of Chemistry and Institute of Nanosensor and Biotechnology, Dankook University)
  • Published : 2008.06.20

Abstract

We investigated the glass transition temperatures ($T_g$) of dendrons consisting of conformationally mobile aliphatic polyether dendritic cores plus glassy peripheral polystyrenes (PSs), and linear PSs in the molecular weight range of 1000-8500 g/mol. We compared their $T_g$ behavior depending on their polymeric architecture. The linear PSs show a typical growth of $T_g$ up to 92.5 ${^{\circ}C}$ as the molecular weight increases to 8300 g/mol, while the dendrons display nearly constant $T_g$ values of 58-61 ${^{\circ}C}$, despite the increase of molecular weight with each generation. The striking contrast of Tg behavior would be mainly attributed to the fact that the dendrons keep the ratio of $N_e$/M ($N_e$: number of peripheral chain ends, M: molecular weight) over all the generations. Additionally, for the influence of dendritic spacers on glass transition temperature we prepared dimeric PSs with different linkage groups such as aliphatic ether, ester and amide bonds. We found that the dimer with the ether spacer exhibited the lowest glass transition at 55.4 ${^{\circ}C}$, while the amide linked dimer showed the highest glass transition temperature at 74.2 ${^{\circ}C}$. This indicates that the peripheral PS chains are effectively decoupled by the conformationally flexible ether spacer. The results from this study demonstrated that polymeric architecture and dendritic core structures play a crucial role in the determination of glass transition behavior, providing a strategy for the systematic engineering of polymer chain mobility.

Keywords

References

  1. Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99, 1665 https://doi.org/10.1021/cr970069y
  2. Hawker, C. J.; Malmström, E. E.; Frank, C. W.; Kampf, J. P. J. Am. Chem. Soc. 1997, 119, 9903 https://doi.org/10.1021/ja972027x
  3. Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819 https://doi.org/10.1021/cr990116h
  4. Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638 https://doi.org/10.1021/ja00177a027
  5. Percec, V.; Cho, W. D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061 https://doi.org/10.1021/ja9819007
  6. Miller, T. M.; Kwock, E. W.; Neenan, T. X. Macromolecules 1992, 25, 3143 https://doi.org/10.1021/ma00038a019
  7. Miller, T. M.; Neenan, T. X.; Zayas, R.; Bair, H. E. J. Am. Chem. Soc. 1992, 114, 1018 https://doi.org/10.1021/ja00029a034
  8. Morikawa, A.; Kakimoto, M.; Imai, Y. Macromolecules 1993, 26, 6324 https://doi.org/10.1021/ma00076a003
  9. Wooley, K. L.; Hawker, C. J.; Pochan, J. M.; Frechet, J. M. J. Macromolecules 1993, 26, 1514 https://doi.org/10.1021/ma00059a006
  10. Chung, Y.-W.; Lee, B.-I.; Kim, H.-Y.; Wiesner, U.; Cho, B.-K. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4988 https://doi.org/10.1002/pola.22287
  11. Chung, Y.-W.; Lee, B.-I.; Cho, B.-K. Macromol. Res. 2008, 16, 113 https://doi.org/10.1007/BF03218839
  12. Chung, Y.-W.; Lee, J.-K.; Zin, W.-C.; Cho, B.-K. J. Am. Chem. Soc. 2008, 130, 7139 https://doi.org/10.1021/ja801163m
  13. Stutz, H. J. Polym. Sci. Part B: Polym. Phys. 1995, 33, 333 https://doi.org/10.1002/polb.1995.090330301
  14. Song, J.; Kim, H.-Y.; Cho, B.-K. Bull. Korean Chem. Soc. 2007, 28, 1771 https://doi.org/10.5012/bkcs.2007.28.10.1771
  15. Cho, B.-K.; Jain, A.; Nieberle, J.; Mahajan, S.; Wiesner, U.; Gruner, S. M.; Turk, S.; Rader, H. J. Macromolecules 2004, 37, 4227 https://doi.org/10.1021/ma035745e
  16. Grayson, S. M.; Fréchet, J. M. J. J. Am. Chem. Soc. 2000, 112, 10335
  17. Jayaraman, M.; Fréchet, J. M. J. J. Am. Chem. Soc. 1998, 120, 12996 https://doi.org/10.1021/ja983229b
  18. Hadjichristidis, N.; Iatrou, H.; Pispas, S.; Pitsikalis, M. J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 3211 https://doi.org/10.1002/1099-0518(20000915)38:18<3211::AID-POLA10>3.0.CO;2-L
  19. Gedde, U. W. Polymer Physics, 1st ed.; Dordrecht: Kluwer Academic Publishers: 1999; pp 80-82
  20. Graessley, W. W. Physical Properties of Polymers, 2nd ed.; American Chemical Society: Washington, DC, 1993; p 129
  21. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525 https://doi.org/10.1146/annurev.pc.41.100190.002521

Cited by

  1. C-type miktoarm terpolymers: Synthesis, thermal and self-assembly properties, and preparation of nanoporous materials vol.51, pp.2, 2012, https://doi.org/10.1002/pola.26403
  2. Nanostructured poly(ethylene oxide)-like dendron-block-linear poly(ethylene-alt-propylene) copolymers: design, synthesis, and thermal and assembling properties vol.8, pp.12, 2012, https://doi.org/10.1039/c2sm07240h
  3. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s vol.7, pp.23, 2015, https://doi.org/10.1021/acsami.5b01833
  4. Salt-induced microphase separation of amorphous dendritic poly(ethylene oxide)-block-linear polystyrene copolymers vol.48, pp.11, 2010, https://doi.org/10.1002/pola.24005
  5. TMEDA Catalyzed Henry (Nitroaldol) Reaction under Metal and Solvent-free Conditions vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1767