DOI QR코드

DOI QR Code

Amino-Functionalized Alkylsilane SAM-Assisted Patterning of Poly(3-hexylthiophene) Nanofilm Robustly Adhered to SiO2 Substrate

  • Pang, Ilsun (Center for Materials and Processes of Self-Assembly, School of Advanced Materials Engineering, Kookmin University) ;
  • Boo, Jin-Hyo (Department of Chemistry, Sungkyunkwan University) ;
  • Sohn, Honglae (Department of Chemistry, Chosun University) ;
  • Kim, Sung-Soo (Center for Materials and Processes of Self-Assembly, School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Jae-Gab (Center for Materials and Processes of Self-Assembly, School of Advanced Materials Engineering, Kookmin University)
  • Published : 2008.07.20

Abstract

We report a novel patterning method for a homo-polymeric poly(3-hexylthiophene) (P3HT) nanofilm particularly capable of strong adhesion to a $SiO_2$ surface. An oxidized silicon wafer substrate was micro-contact printed with n-octadecyltrichlorosilane (OTS) monolayer, and subsequently its negative pattern was selfassembled with three different amino-functionalized alkylsilanes, (3-aminopropyl)trimethoxysilane (APS), N- (2-aminoethyl)-3-aminopropyltrimethoxy silane (EDAS), and (3-trimethoxysilylpropyl) diethylenetriamine (DETAS). Then, P3HT nanofilms were selectively grown on the aminosilane pre-patterned areas via the vapor phase polymerization method. To evaluate the adhesion, patterning, and the film itself, the PEDOT nanofilms and SAMs were investigated with a $Scotch^{(R)}$ tape test, contact angle analyzer, ATR-FT-IR, and optical and atomic force microscopes. The evaluation showed that the newly developed all bottom-up process can offer a simple and inexpensive patterning method for P3HT nanofilms robustly adhered to an oxidized Si wafer surface by the mediation of $FeCl_3$ and amino-functionalized alkylsilane SAMs.

Keywords

References

  1. Nalwa, H. S. Handbook of Conductive Molecules and Polymers; Wiley: New York, 1997; Vols. 1-4
  2. Panzer, M. J.; Frisbie, C. D. Adv. Funct. Mater. 2006, 16, 1051 https://doi.org/10.1002/adfm.200600111
  3. Dodabalapur, A.; Bao, Z.; Makhija, A.; Laquindanum, J. G.; Raju, V. R.; Feng, Y.; Katz, H. E.; Rogers, J. Appl. Phys. Lett. 1998, 73, 142 https://doi.org/10.1063/1.121736
  4. Winther-Jensen, B.; West, K. Macromolecules 2004, 37, 4538 https://doi.org/10.1021/ma049864l
  5. Kim, J.; Kim, E.; Won, Y.; Lee, H.; Suh, K. Synth. Met. 2003, 139, 485 https://doi.org/10.1016/S0379-6779(03)00202-9
  6. Kim, S.; Pang, I.; Lee, J. Macromol. Rapid Commun. 2007, 28, 1574 https://doi.org/10.1002/marc.200700272
  7. Pang, I.; Kim, S.; Lee, J. Surf. Coat. Technol. 2007, 201, 9426 https://doi.org/10.1016/j.surfcoat.2007.04.060
  8. Petri, D. F. S.; Wenz, G.; Schunk, P.; Schimmel, T. Langmuir 1999, 15, 4520 https://doi.org/10.1021/la981379u
  9. Charles, P. T.; Vora, G. J.; Andreadis, J. D.; Fortney, A. J.; Meador, C. E.; Dulcey, C. S.; Stenger, D. A. Langmuir 2003, 19, 1586 https://doi.org/10.1021/la026347s
  10. Das, M.; Molnar, P.; Devaraj, H.; Poeta, M.; Hickman, J. J. Biotechnol. Prog. 2003, 19, 1756 https://doi.org/10.1021/bp034076l
  11. Shiga, T.; Okada, A. J. Appl. Polymer Sci. 1996, 62, 903 https://doi.org/10.1002/(SICI)1097-4628(19961107)62:6<903::AID-APP6>3.0.CO;2-T
  12. Singh, R. K.; Kumar, J.; Singh, R.; Kant, R.; Rastogi, R. C.; Chand, S.; Kumar, V. New J. Phys. 2006, 8, 112 https://doi.org/10.1088/1367-2630/8/7/112

Cited by

  1. Photorefractive Performance of Poly[methyl-3-(9-carbazolyl) propylsiloxane] Based Composites Sensitized with Poly(3-hexylthiophene) in a 0.2-1wt % Range vol.31, pp.1, 2008, https://doi.org/10.5012/bkcs.2010.31.01.041