DOI QR코드

DOI QR Code

Method to Increase the Surface Area of Titania Films and Its Effects on the Performance of Dye-Sensitized Solar Cells

  • Ko, Young-Seon (SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University) ;
  • Kim, Min-Hye (Department of Chemistry, BK-21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Kwon, Young-Uk (SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University)
  • Published : 2008.02.20

Abstract

We report a method to increase the surface area of the titania films used as the anodes of dye-sensitized solar cells (DSSCs) by applying additional titania-coating. The modification was achieved by spin-coating a coating solution that contained a surfactant with a titania source onto the titania electrodes, followed by calcination. Previous similar attempts without a surfactant all reported decreased surface areas. We fabricated DSSCs by using the modified titania films as the anode and measured their performances. The increased surface area increased the amount of adsorbed dyes, which resulted in increased current densities. At the same time, the titania-coating increased both the open-circuit voltage and the current density by reducing the charge-recombination rates of the injected electrons, similar to the results of literatures. Therefore, our method shows an additional mechanism to increase the current density of DSSCs in addition to the other mechanisms of surface modifications with titania-coatings.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737 https://doi.org/10.1038/353737a0
  2. Gratzel, M. Nature 2001, 414, 338 https://doi.org/10.1038/35104607
  3. Hao, S.; Wu, J.; Fan, L.; Huang, Y.; Lin, J.; Wei, Y. Solar Energy 2004, 76, 745 https://doi.org/10.1016/j.solener.2003.12.010
  4. Wang, Z.-S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H. Langmuir 2005, 21, 4272 https://doi.org/10.1021/la050134w
  5. Diamant, Y.; Chen, S. G.; Melamed, O.; Zaban, A. J. Phys. Chem. B 2003, 107, 1977 https://doi.org/10.1021/jp027827v
  6. Menzies, D.; Dai, Q.; Cheng, Y.-B.; Simon, G.; Spiccia, L. Mater. Lett. 2005, 59, 1893 https://doi.org/10.1016/j.matlet.2005.02.048
  7. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125, 475 https://doi.org/10.1021/ja027945w
  8. Menzies, D.; Dai, Q.; Bourgeois, L.; Caruso, R.; Cheng, Y.-B.; Simon, G.; Spiccia, L. Nanotechnology 2007, 18, 125608 https://doi.org/10.1088/0957-4484/18/12/125608
  9. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Chem. Commun. 2002, 1464
  10. Zaban, A.; Chen, S. G.; Chappel, S.; Gregg, B. A. Chem. Commun. 2000, 2231
  11. Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Gratzel, M. J. Am. Ceram. Soc. 1997, 80, 3157 https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
  12. Ito, S.; Liska, P.; Comte, P.; Charvet, R.; Pechy, P.; Bach, U.; Schmidt-Mende, L.; Zakeeruddin, S. M.; Kay, A.; Nazeeruddin, M. K.; Gratzel, M. Chem. Commun. 2005, 4351
  13. Sommeling, P. M.; O'Regan, B. C.; Haswell, R. R.; Smit, H. J. P.; Bakker, N. J.; Smits, J. J. T.; Kroon, J. M.; Roosmalen, J. A. M. van J. Phys. Chem. B 2006, 110, 19191 https://doi.org/10.1021/jp061346k
  14. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382 https://doi.org/10.1021/ja00067a063
  15. Lee, U.-H.; Kim, M.-H.; Kwon, Y.-U. Bull. Korean Chem. Soc. 2006, 27, 808 https://doi.org/10.5012/bkcs.2006.27.6.808
  16. Koh, C.-W.; Lee, U.-H.; Song, J.-K.; Lee, H.-R.; Kim, M.-H.; Suh, M.; Kwon, Y.-U. Chem.-Asian J. in press
  17. Kambe, S.; Nakade, S.; Wada, Y.; Kitamura, T.; Yanagida, S. J. Mater. Chem. 2002, 12, 723 https://doi.org/10.1039/b105142n
  18. Chappel, S.; Chen, S.-G.; Zaban, A. Langmuir 2002, 18, 3336 https://doi.org/10.1021/la015536s
  19. Huang, S. Y.; Schichthorl, G.; Nozik, A. J.; Gratzel, M.; Frank, A. J. J. Phys. Chem. B 1997, 101, 2576 https://doi.org/10.1021/jp962377q

Cited by

  1. Effects of Organic Additive during Thermal Reduction of Platinum Electrodes for Dye-Sensitized Solar Cells vol.51, pp.12, 2010, https://doi.org/10.2320/matertrans.M2010252
  2. Facile Synthesis of Mesoporous Tin Oxide Spheres and Their Applications in Dye-Sensitized Solar Cells vol.116, pp.38, 2012, https://doi.org/10.1021/jp304185q
  3. Effects of Cr2O3 modification on the performance of SnO2 electrodes in DSSCs vol.14, pp.10, 2012, https://doi.org/10.1039/c2cp23545e
  4. A New Unsymmetrical Zinc Phthalocyanine as Photosensitizers for Dye-sensitized Solar Cells vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1225
  5. Enhancement of Photovoltaic Performance of Dye-Sensitized Solar Cells by Modifying Tin Oxide Nanorods with Titanium Oxide Layer vol.117, pp.9, 2013, https://doi.org/10.1021/jp309193n
  6. Effect of reactant concentration on the physicochemical properties of nanosized titania synthesized by microwave-assisted continuous flow method vol.28, pp.14, 2017, https://doi.org/10.1007/s10854-017-6817-6
  7. Photovoltaics literature survey (No. 63) vol.16, pp.5, 2008, https://doi.org/10.1002/pip.838
  8. Synthesis and Characterization of Nanostructured Titania Films for Dye-Sensitized Solar Cells vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.172
  9. Electrochemical deposition of platinum on fluorine-doped tin oxide: The nucleation mechanisms vol.55, pp.24, 2008, https://doi.org/10.1016/j.electacta.2010.07.009
  10. Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO2-Reduced Graphene Oxide Composite vol.115, pp.13, 2008, https://doi.org/10.1021/jp1113575
  11. Enhanced Light Harvesting and Electron Lifetime of Front Side-illuminated CdSe Quantum Dot-assembled TiO2Nanotube Arrays for Quantum Dot-sensitized Solar Cells vol.598, pp.1, 2008, https://doi.org/10.1080/15421406.2014.933386