DOI QR코드

DOI QR Code

Synthesis of Mesoporous Carbons with Controllable N-Content and Their Supercapacitor Properties

  • Kim, Jeong-Nam (National Creative Research Initiative Center for Functional Nanomaterials, Department of Chemistry (School of Molecular Science BK21), Korea Advanced Institute of Science and Technology) ;
  • Choi, Min-Kee (National Creative Research Initiative Center for Functional Nanomaterials, Department of Chemistry (School of Molecular Science BK21), Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea) ;
  • Ryoo, Ryong (National Creative Research Initiative Center for Functional Nanomaterials, Department of Chemistry (School of Molecular Science BK21), Korea Advanced Institute of Science and Technology)
  • Published : 2008.02.20

Abstract

A synthesis route to ordered mesoporous carbons with controllable nitrogen content has been developed for high-performance EDLC electrodes. Nitrogen-doped ordered mesoporous carbons (denoted as NMC) were prepared by carbonizing a mixture of two different carbon sources within the mesoporous silica designated by KIT-6. Furfuryl alcohol was used as a primary carbon precursor, and melamine as a nitrogen dopant. This synthesis procedure gave cubic Ia3d mesoporous carbons containing nitrogen as much as 13%. The carbon exhibited a narrow pore size distribution centered at 3-4 nm with large pore volume (0.6-1 cm3 g-1) and high specific BET surface area (700-1000 m2 g-1). Electrochemical behaviors of the NMC samples with various N-contents were investigated by a two-electrode measurement system at aqueous solutions. At low current density, the NMC exhibited markedly increasing capacitance due to the increase in the nitrogen content. This result could be attributed to the enhanced surface affinity between carbon electrode and electrolyte ions due to the hydrophilic nitrogen functional groups. At high current density conditions, the NMC samples exhibited decreasing specific capacitance against the increase in the nitrogen content. The loss of the capacitance with the N-content may be explained by high electric resistance which causes a significant IR drop at high current densities. The present results indicate that the optimal nitrogen content is required for achieving high power and high energy density simultaneously.

Keywords

References

  1. Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer-Plenum Press: New York, 1999
  2. Arico, A. S.; Bruce, P.; Tarascon, J. M.; Van-Schalkwijk, W. Nature Mater. 2005, 4, 366 https://doi.org/10.1038/nmat1368
  3. Kotz, R.; Carlen, M. Electrochimica Acta 2000, 45, 2483 https://doi.org/10.1016/S0013-4686(00)00354-6
  4. Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937 https://doi.org/10.1016/S0008-6223(00)00183-4
  5. Frackowiak, E. Phys. Chem. Chem. Phys. 2007, 9, 1774 https://doi.org/10.1039/b618139m
  6. Endo, M.; Takeda, T.; Kim, Y. J.; Koshiba, K.; Ishii, K. Carbon Science 2001, 1, 117
  7. Ryoo, R.; Joo, S. H. Stud. Surf. Sci. Catal. 2004, 148, 241 https://doi.org/10.1016/S0167-2991(04)80200-3
  8. Yoon, S.; Lee, J. W.; Hyeon, T.; Oh, S. M. J. Electrochem. Soc. 2000, 147, 2507 https://doi.org/10.1149/1.1393561
  9. Vix-Guterl, C.; Saadallah, S.; Jurewicz, K.; Frackowiak, E.; Reda, M.; Parmentier, J.; Patarin, J.; Beguin, F. Materials Science and Engineering B 2004, 108, 148 https://doi.org/10.1016/j.mseb.2003.10.096
  10. Alvarez, S.; Blanco-Lopez, M. C.; Miranda-Ordieres, A. J.; Fuertes, A. B.; Centeno, T. A. Carbon 2005, 43, 855 https://doi.org/10.1016/j.carbon.2004.10.049
  11. Xing, W.; Qiao, S. Z.; Ding, R. G.; Li, F.; Lu, G. Q.; Yan, Z. F.; Cheng, H. M. Carbon 2006, 44, 216 https://doi.org/10.1016/j.carbon.2005.07.029
  12. Jurewicz, K.; Babel, K.; Ziolkowski, A.; Wachowska, H. J. Phys. Chem. Solids 2004, 65, 269 https://doi.org/10.1016/j.jpcs.2003.10.023
  13. Lota, G.; Grzyb, B.; Machnikowska, H.; Machnikowski, J.; Frackowiak, E. Chem. Phys. Lett. 2005, 404, 53 https://doi.org/10.1016/j.cplett.2005.01.074
  14. Hulicova, D.; Kodama, M.; Hatori, H. Chem. Mater. 2006, 18, 2318 https://doi.org/10.1021/cm060146i
  15. Beguin, F.; Szostak, K.; Lota, G.; Frackowiak, E. Adv. Mater. 2005, 17, 2380 https://doi.org/10.1002/adma.200402103
  16. Frackowiak, E.; Lota, G.; Machnikowski, J.; Vix-Guterl, C.; Beguin, F. Electrochimica Acta 2006, 51, 2209 https://doi.org/10.1016/j.electacta.2005.04.080
  17. Li, W.; Chen, D.; Li, Z.; Shi, Y.; Wan, Y.; Huang, J.; Yang, J.; Zhao, D.; Jiang, Z. Electrochem. Commun. 2007, 9, 569 https://doi.org/10.1016/j.elecom.2006.10.027
  18. Xia, Y.; Mokaya, R. Adv. Mater. 2004, 16, 1553 https://doi.org/10.1002/adma.200400391
  19. Lu, A. H.; Kiefer, A.; Schmidt, W.; Schuth, F. Chem. Mater. 2004, 16, 100 https://doi.org/10.1021/cm031095h
  20. Gierszal, K. P.; Kim, T.-W.; Ryoo, R.; Jaroniec, M. J. Phys. Chem. B 2005, 109, 23263 https://doi.org/10.1021/jp054562m
  21. Smits, F. M. Bell System Tech. J. 1958, 711
  22. Hou, P. X.; Orikasa, H.; Yamazaki, T.; Matsuoka, K.; Tomita, A.; Setoyama, N.; Fukushima, Y.; Kyotani, T. Chem. Mater. 2005, 17, 5187 https://doi.org/10.1021/cm051094k
  23. Derradji, N. E.; Mahdjoubi, M. L.; Belkhir, H.; Mumumbila, N.; Angleraud, B.; Tessier, P. Y. Thin Solid Films 2005, 482, 258 https://doi.org/10.1016/j.tsf.2004.11.137
  24. An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J. M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H. Adv. Funct. Mater. 2001, 11, 387 https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
  25. Raymundo-Pinero, E.; Leroux, F.; Beguin, F. Adv. Mater. 2006, 18, 1877 https://doi.org/10.1002/adma.200501905

Cited by

  1. Template synthesis of carbon-based uniform nanoporous materials and their applications for energy storage vol.2011, pp.248, 2011, https://doi.org/10.7209/tanso.2011.89
  2. Functional Carbon Materials From Ionic Liquid Precursors vol.213, pp.10-11, 2012, https://doi.org/10.1002/macp.201100573
  3. Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment vol.25, pp.3, 2014, https://doi.org/10.14478/ace.2014.1030
  4. Synthesis and physical–chemical properties of N-containing nanoporous carbons vol.49, pp.12, 2014, https://doi.org/10.1007/s10853-014-8133-3
  5. Nitrogenated graphene and carbon nanomaterials by carbonization of polyfurfuryl alcohol in the presence of urea and dicyandiamide vol.17, pp.2, 2015, https://doi.org/10.1039/C4GC01676A
  6. Controllable synthesis and capacitive performance of nitrogen-doped porous carbon from carboxymethyl chitosan by template carbonization method vol.19, pp.10, 2015, https://doi.org/10.1007/s10008-015-2906-8
  7. Selective Adsorption of Naphthalene in Aqueous Solution on Mesoporous Carbon Functionalized by Task-specific Ionic Liquid vol.54, pp.8, 2015, https://doi.org/10.1021/ie5040144
  8. Effect of the conditions of the matrix carbonization of sucrose on the structure and adsorption properties of mesoporous carbon materials vol.44, pp.6, 2008, https://doi.org/10.1007/s11237-009-9055-z
  9. Diels-Alder Cycloaddition of Cyclopentadiene with Ethylacrylate Catalyzed by Mesoporous Al-MCM-48 and Al-MCM-41 Catalysts vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1993
  10. Enhancement Mechanism of Electrochemical Capacitance in Nitrogen-/Boron-Doped Carbons with Uniform Straight Nanochannels vol.25, pp.19, 2008, https://doi.org/10.1021/la901318d
  11. A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials vol.20, pp.32, 2008, https://doi.org/10.1039/c0jm00869a
  12. Properties of Nitrogen-Functionalized Ordered Mesoporous Carbon Prepared Using Polypyrrole Precursor vol.157, pp.11, 2008, https://doi.org/10.1149/1.3489412
  13. Reduction Behaviors of Nitric Oxides on Copper-decorated Mesoporous Molecular Sieves vol.31, pp.1, 2010, https://doi.org/10.5012/bkcs.2010.31.01.100
  14. Synthesis of boron/nitrogen substituted carbons for aqueous asymmetric capacitors vol.56, pp.15, 2008, https://doi.org/10.1016/j.electacta.2011.03.112
  15. Templated Nanocarbons for Energy Storage vol.24, pp.33, 2008, https://doi.org/10.1002/adma.201201715
  16. Energy-Dense Aqueous Carbon/Carbon Supercapacitor with a Wide Voltage Window vol.168, pp.7, 2008, https://doi.org/10.1149/1945-7111/ac1319
  17. Sodium Dodecylbenzene Sulfonate Assisted Electrodeposition of MnO2@C Electrode for High Performance Supercapacitor vol.168, pp.12, 2008, https://doi.org/10.1149/1945-7111/ac41f3