DOI QR코드

DOI QR Code

Rhodamine B Hydrazide Revisited: Chemodosimetric Hg2+-selective Signaling Behavior in Aqueous Environments

  • Published : 2008.03.20

Abstract

The well-known Cu2+-selective chemodosimetric behavior of rhodamine B hydrazide was successfully switched to selectivity for Hg2+. The fluorescence signaling is remarkably selective toward Hg2+ ions compared to other common biologically and environmentally important metal ions, including Cu2+ ions. The detection limit was 0.2 mM in an acetate-buffered aqueous 10% methanol solution at pH 5. The OFF-ON type of signaling is due to the selective Hg2+-induced hydrolysis of the lactam ring of the hydrazide as has been reported for the standard Cu2+-signaling process of the same compound. A simple change in medium resulted in clear switching of selective signaling from Cu2+ to Hg2+, which extends the applicability of the easily accessible hydrazide derivative.

Keywords

References

  1. Desvergne, J. P.; Czarnik, A. W. Chemosensors of Ion and Molecule Recognition; Kluwer: Dordrecht, 1997
  2. Fluorescent Chemosensors for Ion and Molecule Recognition; Czarnik, A. W., Ed.; American Chemical Society: Washington, DC, 1992
  3. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515 https://doi.org/10.1021/cr960386p
  4. Jimenez, D.; Martínez-Manez, R.; Sancenón, F.; Ros-Lis, J. V.; Benito, A.; Soto, J. J. Am. Chem. Soc. 2003, 125, 9000 https://doi.org/10.1021/ja0347336
  5. Yang, Y. K.; Yook, K. J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760 https://doi.org/10.1021/ja054855t
  6. Ko, S.-K.; Yang, Y.-K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006, 128, 14150 https://doi.org/10.1021/ja065114a
  7. Song, K. C.; Kim, J. S.; Park, S. M.; Chung, K.-C.; Ahn, S.; Chang, S.-K. Org. Lett. 2006, 8, 3413 https://doi.org/10.1021/ol060788b
  8. Lee, M. H.; Wu, J.-S.; Lee, J. W.; Jung, J. H.; Kim, J. S. Org. Lett. 2007, 9, 2501 https://doi.org/10.1021/ol0708931
  9. Wu, J.-S.; Hwang, I.-C.; Kim, K. S.; Kim, J. S. Org. Lett. 2007, 9, 907 https://doi.org/10.1021/ol070109c
  10. Kim, S. Y.; Hong, J.-I. Org. Lett. 2007, 9, 3109 https://doi.org/10.1021/ol0711873
  11. Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386 https://doi.org/10.1021/ja971221g
  12. Xiang, Y.; Mei, L.; Li, N.; Tong, A. Anal. Chim. Acta 2007, 581, 132 https://doi.org/10.1016/j.aca.2006.08.006
  13. Chen, X.; Zou, J. Microchim. Acta 2007, 157, 133 https://doi.org/10.1007/s00604-006-0685-8
  14. Wu, D.; Huang, W.; Duan, C.; Lin, Z.; Meng, Q. Inorg. Chem. 2007, 46, 1538 https://doi.org/10.1021/ic062274e
  15. Yang, X.-F.; Li, Y.; Bai, Q. Anal. Chim. Acta 2007, 584, 95 https://doi.org/10.1016/j.aca.2006.11.015
  16. Zheng, H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu, J.-G. Org. Lett. 2006, 8, 859 https://doi.org/10.1021/ol0529086
  17. Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett. 2006, 8, 2863 https://doi.org/10.1021/ol0610340
  18. Chen, X.; Ma, H. Anal. Chim. Acta 2006, 575, 217 https://doi.org/10.1016/j.aca.2006.05.097
  19. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270 https://doi.org/10.1021/ja037995g
  20. Guo, X.; Qian, X.; Jia, L. J. Am. Chem. Soc. 2004, 126, 2272 https://doi.org/10.1021/ja037604y
  21. Chen, P.; He, C. J. Am. Chem. Soc. 2004, 126, 728 https://doi.org/10.1021/ja0383975
  22. Ono, A.; Togashi, H. Angew. Chem. Int. Ed. 2004, 43, 4300 https://doi.org/10.1002/anie.200454172
  23. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030 https://doi.org/10.1021/ja0557987
  24. Ros-Lis, J. V.; Marcos, M. D.; Martinez-Manez, R.; Rurack, K.; Soto, J. Angew. Chem. Int. Ed. 2005, 44, 4405 https://doi.org/10.1002/anie.200500583
  25. Kim, S. H.; Youn, N. J.; Park, J. Y.; Choi, M. G.; Chang, S.-K. Bull. Korean Chem. Soc. 2006, 27, 1553 https://doi.org/10.5012/bkcs.2006.27.10.1553
  26. Kim, J. S.; Choi, M. G.; Song, K. C.; No, K. T.; Ahn, S.; Chang, S.-K. Org. Lett. 2007, 9, 1129 https://doi.org/10.1021/ol070143r
  27. Yang, H.; Zhou, Z.; Huang, K.; Yu, M.; Li, F.; Yi, T.; Huang, C. Org. Lett. 2007, 9, 4729 https://doi.org/10.1021/ol7020143
  28. Xie, J.; Menand, M.; Maisonneuve, S.; Metivier, R. J. Org. Chem. 2007, 72, 5980 https://doi.org/10.1021/jo070315y
  29. Yang, X.-F.; Guo, X.-Q.; Zhao, Y.-B. Anal. Chim. Acta 2002, 456, 121 https://doi.org/10.1016/S0003-2670(02)00005-3

Cited by

  1. Micellar mediated trace level mercury quantification through the rhodamine B hydrazide spirolactam ring opening process vol.3, pp.3, 2011, https://doi.org/10.1039/c0ay00693a
  2. Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(ii) ion vol.9, pp.12, 2011, https://doi.org/10.1039/c0ob01179g
  3. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives vol.112, pp.3, 2012, https://doi.org/10.1021/cr200201z
  4. 2,7-Dichlorofluorescein Hydrazide as a New Fluorescent Probe for Mercury Quantification: Application to Industrial Effluents and Polluted Water Samples vol.2013, pp.2314-4939, 2013, https://doi.org/10.1155/2013/276981
  5. Fluorogenic detection of Hg2+, Cd2+, Fe2+, Pb2+ cations in aqueous media by means of an acrylamide-acrylic acid copolymer chemosensor with pendant rhodamine-based dyes vol.21, pp.3, 2014, https://doi.org/10.1007/s10965-013-0354-7
  6. Development of Rhodamine-Based Fiber Optic Sensor for Detection of Mercury in Aqueous Environments vol.23, pp.3, 2014, https://doi.org/10.5369/JSST.2014.23.3.173
  7. Effects of Single and Double Bonds in Linkers on Colorimetric and Fluorescent Sensing Properties of Polyving Akohol Grafting Rhodamine Hydrazides vol.25, pp.2, 2015, https://doi.org/10.1007/s10895-015-1528-y
  8. -vinyl pyrrolidone) bearing rhodamine B derivatives as polymeric chemosensor vol.27, pp.1, 2016, https://doi.org/10.1002/pat.3603
  9. Fluorescent Polyamide-Based Rhodamine Hydrazide Moieties with Oxethyl as Spacer for Detection of Cr3+, Fe3+, and Hg2+ Ions in Water vol.26, pp.3, 2016, https://doi.org/10.1007/s10895-016-1785-4
  10. -sensitive and selective fluorescent sensors in aqueous solution and sensors-encapsulated polymeric membrane vol.6, pp.13, 2016, https://doi.org/10.1039/C5RA22977D
  11. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions vol.37, pp.8, 2008, https://doi.org/10.1039/b802497a
  12. A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine–thioamide–alkyne scaffold vol.46, pp.20, 2010, https://doi.org/10.1039/b927373e
  13. Selective Ratiometric Signaling of Hg2+ Ions by a Fluorescein-Coumarin Chemodosimeter vol.31, pp.1, 2008, https://doi.org/10.5012/bkcs.2010.31.01.246
  14. An overview of the recent developments on Hg2+ recognition vol.4, pp.68, 2008, https://doi.org/10.1039/c4ra03594a
  15. Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals vol.615, pp.None, 2008, https://doi.org/10.1016/j.scitotenv.2017.09.126
  16. Crystal structure of (E)-2-(((6-bromopyridin-2-yl)methylene)amino)-3′,6′-bis(diethylamino)spiro[isoindoline-1,9′-xanthen]-3-one, C34H34N5O2Br vol.234, pp.2, 2019, https://doi.org/10.1515/ncrs-2018-0365
  17. Crystal structure of (E)-2-(((6-bromopyridin-2-yl)methylene)amino)-3′,6′-bis(diethylamino)spiro[isoindoline-1,9′-xanthen]-3-one, C34H34N5O2Br vol.234, pp.2, 2019, https://doi.org/10.1515/ncrs-2018-0365
  18. Naked-eye detection of Hg(II) ions by visible light-induced polymerization initiated by a Hg(II)-selective photoredox catalyst vol.12, pp.7, 2008, https://doi.org/10.1039/d0py01616k