DOI QR코드

DOI QR Code

EPR Investigation on a Quantitative Analysis of Eu(II) and Eu(III) in LiCl/KCl Eutectic Molten Salt

  • Park, Yong-Joon (Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute) ;
  • Kim, Tack-Jin (Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute) ;
  • Cho, Young-Hwan (Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute) ;
  • Jung, Yong-Ju (Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute) ;
  • Im, Hee-Jung (Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute) ;
  • Song, Kyu-Seok (Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute) ;
  • Jee, Kwang-Yong (Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute)
  • 발행 : 2008.01.20

초록

EPR spectroscopic technique was applied for a quantitative analysis of Eu(II) for a speciation of europium in a LiCl-KCl eutectic melt. By adopting the first absorption line of each isotopes (151Eu and 153Eu), a calibration plot was obtained. The calibration of the EPR intensity shows a good linearity according to the amount of Eu(II). The EPR intensity was identified to increase proportionally with a decrease of the attenuation parameter for EPR microwave power. The fluorescence technique was used qualitatively to find whether either of Eu(II) or Eu(III) ions exists in a molten salt sample. The ICP-AES technique was also adopted to determine the total concentration of europium in the sample, since EPR is only sensitive for detecting the Eu(II) ion. The extent of the reduction of Eu(III) in the LiCl-KCl eutectic melt at 723 K was determined by using this technique.

키워드

참고문헌

  1. Usami, T.; Kurata, M.; Inoue, T.; Sims, H. E.; Beetham, S. A.; Jenkins, J. A. J. Nuclear Materials 2002, 300, 15 https://doi.org/10.1016/S0022-3115(01)00703-6
  2. Park, B. H.; Hur, J. M.; Seo, C. S.; Park, S. W. Proceedings of Global 2003 Conference; New Orleans, Louisiana, Nov. 2003; p 16
  3. Kim, T. J.; Cho, Y. H.; Choi, I. K.; Kang, J. K.; Jee, K. Y. J. Lumin. 2007, 127, 731 https://doi.org/10.1016/j.jlumin.2007.04.008
  4. Lian, Z.; Wang, J.; Lv, Y.; Wang, S.; Su, Q. J. Alloys Compd. 2007, 430, 257 https://doi.org/10.1016/j.jallcom.2006.05.002
  5. Kang, J. G.; Cho, H. G.; Kim, J. G.; Choi, K. S. Mater. Chem. Phys. 2005, 91, 172 https://doi.org/10.1016/j.matchemphys.2004.11.008
  6. Kim, K. B.; Koo, K. W.; Cho, T. Y.; Chun, H. G. Mater. Chem. Phys. 2003, 80, 682
  7. Rey, J. M.; Bill, H.; Lovy, D.; Hagemann, H. J. Alloys Compd. 1998, 268, 60 https://doi.org/10.1016/S0925-8388(97)00606-3
  8. Kumar, V. R.; Narasimhulu, K. V.; Gopal, N. O.; Rao, J. L.; Chakradhar, R. P. S. Physica B 2004, 348, 446 https://doi.org/10.1016/j.physb.2004.01.148
  9. Askerov, I. M. J. Magn. Magn. Mater. 2007, 312, 280 https://doi.org/10.1016/j.jmmm.2006.10.405
  10. Pei, Z.; Zeng, Q.; Su, Q. J. Solid State Chem. 1999, 145, 212 https://doi.org/10.1006/jssc.1999.8246
  11. Fujihara, S.; Kishiki, Y.; Kimura, T. J. Solid State Chem. 2004, 177, 1032 https://doi.org/10.1016/j.jssc.2003.10.008
  12. Kuznetsov, S. A.; Rycerz, L.; Gaune-Escard, M. J. Nucl. Mat. 2005, 344, 152 https://doi.org/10.1016/j.jnucmat.2005.04.034
  13. Kurznetsov, S. A.; Gaune-Escard, M. Electrochim. Acta 2001, 46, 1101 https://doi.org/10.1016/S0013-4686(00)00708-8

피인용 문헌

  1. -LiCl molten salts pp.01928651, 2018, https://doi.org/10.1002/jcc.25558
  2. LiCl-KCl 고온 용융염 내 UCl3 및 GdCl3의 전기화학적 거동 연구 vol.12, pp.3, 2008, https://doi.org/10.5229/jkes.2009.12.3.276
  3. In situ analysis for spontaneous reduction of Eu3+ in LiCl pyroprocessing media at 923 K vol.286, pp.1, 2008, https://doi.org/10.1007/s10967-010-0651-0