DOI QR코드

DOI QR Code

Poly(p-phenylenevinylene)s Derivatives Containing a New Electron-Withdrawing CF3F4Phenyl Group for LEDs

  • Jin, Young-Eup (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kang, Jeung-Hee (Samsung Electronics Co) ;
  • Song, Su-Hee (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Park, Sung-Heum (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Moon, Ji-Hyun (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Woo, Han-Young (Department of Nanomaterials Engineering, Pusan National University) ;
  • Lee, Kwang-Hee (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Suh, Hong-Suk (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2008.01.20

Abstract

New PPV derivatives which contain electron-withdrawing CF3F4phenyl group, poly[2-(2-ethylhexyloxy)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (CF3F4P-PPV), and poly[2-(4-(2-etylhexyloxy)-phenyl)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (P-CF3F4P-PPV), have been synthesized by GILCH polymerization. As the result of the introduction of the electron-withdrawing CF3F4phenyl group to the phenyl backbone, the LUMO and HOMO energy levels of CF3F4P-PPV (3.14, 5.50 eV) and P-CF3F4P-PPV (3.07, 5.60 eV) were reduced. The PL emission spectra in solid thin film are more red-shifted over 50 nm and increased fwhm (full width at half maximum) than solution conditions by raising aggregation among polymer backbone due to electron withdrawing effect of 2,3,5,6-tetrafluoro-4-trifluoromethylphenyl group. The EL emission maxima of CF3F4P-PPV and P-CF3F4P-PPV appear at around 530-543 nm. The current density-voltage-luminescence (J-V-L) characteristics of ITO/PEDOT/polymer/Al devices of CF3F4P-PPV and P-CF3F4P-PPV show that turn-on voltages are around 12.5 and 7.0 V, and the maximum brightness are about 82 and 598 cd/m2, respectively. The maximum EL efficiency of P-CF3F4P-PPV (0.51 cd/A) was higher than that of CF3F4P-PPV (0.025 cd/A).

Keywords

References

  1. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737 https://doi.org/10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N
  2. Suh, H.; Jin, Y.; Park, S. H.; Kim, D.; Kim, J.; Kim, C.; Kim, J. Y.; Lee, K. Macromolecules 2005, 38, 6285 https://doi.org/10.1021/ma050812l
  3. Huang, F.; Hou, L.; Wu, H.; Wang, X.; Shen, H.; Cao, W.; Yang, W.; Cao, Y. J. Am. Chem. Soc. 2004, 126, 9845 https://doi.org/10.1021/ja0476765
  4. Peng, Q.; Peng, J. B.; Kang, E. T.; Neoh, K. G.; Cao, Y. Macromolecules 2005, 38, 7292 https://doi.org/10.1021/ma050378n
  5. Yang, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 79, 934 https://doi.org/10.1063/1.360875
  6. Jin, Y.; Kim, K.; Park, S. H.; Song, S.; Kim, J.; Jung, J.; Lee, K.; Suh, H. Macromolecules 2007, 40, 6799 https://doi.org/10.1021/ma071074z
  7. Sheats, J. R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D. B.; Stoching, A. Science 1996, 273, 884 https://doi.org/10.1126/science.273.5277.884
  8. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402 https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  9. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salameck, W. R. Nature (London) 1999, 357, 121 https://doi.org/10.1038/357121a0
  10. Jin, Y.; Kang, J. H.; Song, S.; Park, S. H.; Moon, J.; Woo, H. Y.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2007, 28, 2419 https://doi.org/10.5012/bkcs.2007.28.12.2419
  11. Jin, Y.; Kim, K.; Song, S.; Kim, J.; Kim, J.; Park, S. H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2006, 27, 1043 https://doi.org/10.5012/bkcs.2006.27.7.1043
  12. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539 https://doi.org/10.1038/347539a0
  13. Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Adv. Mater. 1992, 4, 36 https://doi.org/10.1002/adma.19920040107
  14. Andersson, M. R.; Thomas, O.; Mammo, W.; Svensson, M.;Theander, M.; Inganäs, O. J. Mater. Chem. 1999, 9, 1933 https://doi.org/10.1039/a902859e
  15. Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416 https://doi.org/10.1021/ja9615233
  16. Brown, A. R.; Bradley, D. D. C.; Burroughes, J. H.; Friend, R. H.; Greenham, N. C.; Burn, P. L.; Holmes, A. B.; Kraft, A. Appl. Phys. Lett. 1992, 61, 2793 https://doi.org/10.1063/1.108094
  17. Parker, I. D.; Pei, Q.; Marrocco, M. Appl. Phys. Lett. 1994, 65, 1272 https://doi.org/10.1063/1.112092
  18. Jin, Y.; Kim, J. Y.; Park, S. H.; Kim, J.; Lee, S.; Lee, K.; Suh, H Polymer 2005, 46, 12158 https://doi.org/10.1016/j.polymer.2005.10.080
  19. Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Nature (London) 1993, 365, 628 https://doi.org/10.1038/365628a0
  20. Burn, P. L.; Grice, A. W.; Jajbakhsh, A.; Bradley, D. D. C.; Thomas, A. C. Adv. Mater. 1997, 9, 1171 https://doi.org/10.1002/adma.19970091510
  21. Bredas, J. L.; Heeger, A. J. Chem. Phys. Lett. 1994, 54, 401
  22. Ko, S. W.; Jung, B.-J.; Ahn, T.; Shim, H.-K. Macromolecules 2002, 35, 6217 https://doi.org/10.1021/ma020285v
  23. Jin, Y.; Kim, J.; Park, S. H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2005, 26, 795 https://doi.org/10.5012/bkcs.2005.26.5.795
  24. Sarnecki, G. J.; Friend, R. H.; Moratti, S. C. Synth. Met. 1995, 69, 545 https://doi.org/10.1016/0379-6779(94)02561-C
  25. Gurge, R. M.; Sarker, A.; Laht, P. M.; Hu, B.; Karasz, F. E. Macromolecules 1996, 29, 4287 https://doi.org/10.1021/ma960104n
  26. Gurge, R. M.; Sarker, A.; Laht, P. M.; Hu, B.; Karasz, F. E. Macromolecules 1997, 30, 8286 https://doi.org/10.1021/ma970693c
  27. Jin, J. I.; Kim, J. C.; Shim, H. K. Macromolecules 1992, 25, 5519 https://doi.org/10.1021/ma00046a060
  28. Benjamin, I.; Faraggi, E. Z.; Avny, Y.; Davidov, D.; Neumann, R. Chem. Mater. 1996, 8, 352 https://doi.org/10.1021/cm950347e
  29. Lahti, P. M.; Sarker, A.; Garay, R. O.; Lenz, R. W.; Karasz, F. E. Polymer 1994, 35, 1312 https://doi.org/10.1016/0032-3861(94)90029-9
  30. Grimsdale, A. C.; Cacialli, F.; Gruner, J.; Lix, C.; Holmes, A. B.; Moratti, S. C.; Friend, R. H. Synth. Met. 1996, 76, 165 https://doi.org/10.1016/0379-6779(95)03444-O
  31. Boardman, F. H.; Grice, A. W.; Ruther, M. G.; Sheldon, T. J.; Bradley, D. D. C.; Burn, P. L. Macromolecules 1999, 32, 111 https://doi.org/10.1021/ma981309u
  32. Broms, P.; Fahlman, M.; Xing, K. Z.; Salaneck, W. R.; Dannetun, P.; Cornil, J.; dos Santos, D. A.; Brédas, J. L.; Moratti, S. C.; Holmes, A. B.; Friend, R. H. Synth. Met. 1994, 67, 93 https://doi.org/10.1016/0379-6779(94)90017-5
  33. Jin, Y.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Lee, K.; Suh, H. Macromolecules 2004, 37, 6711 https://doi.org/10.1021/ma0493022
  34. Jin, Y.; Ju, J.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Son, S. M.; Jin, S. H.; Lee, K.; Suh, H. Macromolecules 2003, 36, 6970 https://doi.org/10.1021/ma025862u
  35. Jin, Y.; Kim, J.; Song, S.; Park, S. H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2005, 26, 855 https://doi.org/10.5012/bkcs.2005.26.5.855
  36. Becker, H.; Spreitzer, H.; Ibrom, K.; Kreuder, W. Macromolecules 1999, 32, 4925 https://doi.org/10.1021/ma990347q

Cited by

  1. Synthesis and Characterization of Novel Conjugated Polymer with Thiophene and Benzimidazole vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3045
  2. Benzotrifluoromethyl group-substituted poly(para-phenylenevinylene): Effect on solubility, optical, and electronic properties pp.10974628, 2010, https://doi.org/10.1002/app.31528
  3. Synthesis and electro-optical properties of a new copolymer based on EDOT and carbazole vol.19, pp.7, 2008, https://doi.org/10.1080/15685551.2016.1209627
  4. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications vol.13, pp.17, 2008, https://doi.org/10.3390/polym13172898