References
- Mullett, W. M.; Lai, E. P. C.; Yeung, J. M. Methods 2000, 22, 77 https://doi.org/10.1006/meth.2000.1039
- Schuck, P. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 541 https://doi.org/10.1146/annurev.biophys.26.1.541
- Wei, Q.; Lee, M.; Yu, X.; Lee, E. K.; Seong, G. H.; Choo, J.; Cho, Y. W. Anal. Biochem. 2006, 358, 31 https://doi.org/10.1016/j.ab.2006.08.019
- Selvin, P. R. Nat. Struct. Biol. 2000, 7, 730 https://doi.org/10.1038/78948
- Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B.; Bawendi, M. G.; Mattoussi, H. J. Am. Chem. Soc. 2004, 126, 301 https://doi.org/10.1021/ja037088b
- Alivisatos, A. P. Science 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
- Mattoussi, H.; Medintz, I. L.; Clapp, A. R.; Goldman, E. R.; Jaiswal, J. K.; Simon, S. M.; Mauro, J. M. J. Assoc. Lab. Autom. 2004, 9, 28 https://doi.org/10.1016/S1535-5535(03)00083-2
- Kim, K.; Lee, S.; Lee, M.; Han, B.; Kim, S.; Choo, J.; Shin, S. Y.; Lee, Y. H.; Gweon, D. G.; Oh, C. H. Bull. Kor. Chem. Soc. 2007, 28, 909 https://doi.org/10.5012/bkcs.2007.28.6.909
- Weigl, B. H.; Yager, P. Science 1999, 283, 346 https://doi.org/10.1126/science.283.5400.346
- Kenis, P. J. A.; Ismagilov, R. F.; Whitesides, G. M. Science 1999, 285, 83 https://doi.org/10.1126/science.285.5424.83
- Heule, M.; Manz, A. Lab Chip 2004, 4, 506 https://doi.org/10.1039/b404633a
- Park, T.; Lee, S.; Seong, G. H.; Choo, J.; Lee, E. K.; Kim, Y. S.; Ji, W. H.; Hwang, S. Y.; Gweon, D. G.; Lee, S. Lab Chip 2005, 5, 437 https://doi.org/10.1039/b414457k
- Yea, K.; Lee, S.; Choo, J.; Oh, C. H.; Lee, S. Chem. Commun. 2006, 1509
- Jung, J.; Choo, J.; Kim, D. J.; Lee, S. Bull. Kor. Chem. Soc. 2006, 27, 277 https://doi.org/10.5012/bkcs.2006.27.2.277
- Chen, L.; Lee, S.; Lee, M.; Lim, C.; Choo, J.; Park, J. Y.; Lee, S.; Joo, S. W.; Lee, K. H.; Choi, Y. W. Biosens. Bioelectron. 2008, 23, 1878 https://doi.org/10.1016/j.bios.2008.02.013
- Palmieri, C.; Cheng, G. J.; Saji, S.; Zelada-Hedman, M.; Warri, A.; Weihua, Z.; Van Noorden, S.; Wahlstrom, T.; Coombes, R. C.; Warner, M.; Gustafsson, J. A. Endocr. Relat. Cancer 2002, 9, 1 https://doi.org/10.1677/erc.0.0090001
Cited by
- Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review vol.11, pp.4, 2011, https://doi.org/10.1039/C0LC00204F
- Colloidal nanomaterial-based immunoassay vol.7, pp.6, 2012, https://doi.org/10.2217/nnm.12.58
- A bead-based fluorescence immunosensing technique enabled by the integration of Förster resonance energy transfer and optoelectrokinetic concentration vol.10, pp.1, 2016, https://doi.org/10.1063/1.4940938
- FRET for lab-on-a-chip devices — current trends and future prospects vol.10, pp.11, 2010, https://doi.org/10.1039/b924271f
- Immunoassays in microfluidic systems vol.397, pp.3, 2010, https://doi.org/10.1007/s00216-010-3678-8
- A Fluorescence "Turn-On" Microfluidic Sensor Based on an Acenaphthopyrrolcarbonitrile Derivative vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2095
- Investigation of Cell-Matrix Interactions Using a FRET Technique vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1817
- Reversible Modulation of Fluorescence Signals of Conjugated Polydiacetylene Supramolecules in a Microfluidic Sensor Chip vol.31, pp.2, 2010, https://doi.org/10.5012/bkcs.2010.31.02.273
- Recent development of microfluidic diagnostic technologies : Recent development of microfluidic diagnostic technologies vol.29, pp.4, 2008, https://doi.org/10.3724/sp.j.1123.2011.00284