DOI QR코드

DOI QR Code

Effect of Silicon Content over Fe-Cu-Si/C Based Composite Anode for Lithium Ion Battery

  • Published : 2008.02.20

Abstract

Two different anode composite materials comprising of Fe, Cu and Si prepared using high energy ball milling (HEBM) were explored for their capacity and cycling behaviors. Prepared powder composites in the ratio Cu:Fe:Si = 1:1:2.5 and 1:1:3.5 were characterized through X-Ray diffraction (XRD) and scanning electron microscope (SEM). Nevertheless, the XRD shows absence of any new alloy/compound formation upon ball milling, the elements present in Cu(1)Fe(1)Si(2.5)/Graphite composite along with insito generated Li2O demonstrate a superior anodic behavior and delivers a reversible capacity of 340 mAh/g with a high coulombic efficiency (98%). The higher silicon content Cu(1)Fe(1)Si(3.5) along with graphite could not sustain capacity with cycling possibly due to ineffective buffer action of the anode constituents.

Keywords

References

  1. Yazami, R.; Zaghib, K.; Deschamps, M. J. Power Sources 1994, 52, 55 https://doi.org/10.1016/0378-7753(94)01933-9
  2. Nikolay Dimov, Satoshi Kugino, Masaki Yoshio, Electrochim. Acta 2003, 48, 1579 https://doi.org/10.1016/S0013-4686(03)00030-6
  3. Wolfenstine, J. Power Sources 2003, 124, 241 https://doi.org/10.1016/S0378-7753(03)00731-6
  4. Wang, G. X.; Sun, L.; Bradhurst, D. H.; Zhong, S.; Dou, S. X.; Liu, H. K. J. Power Sources 2000, 88, 278 https://doi.org/10.1016/S0378-7753(00)00385-2
  5. Park, M. S.; Rajendran, S.; Kang, Y. M.; Han, K. S.; Han, Y. S.; Lee, J. Y. J. Power Sources 2006, 158, 650 https://doi.org/10.1016/j.jpowsour.2005.08.052
  6. Park, M. S.; Lee, Y. J.; Han, Y. S.; Lee, J. Y. Materials Letters 2006, 60, 3079 https://doi.org/10.1016/j.matlet.2006.02.052
  7. Wang, Z.; Tian, W. H.; Liu, X. H.; Li, Y.; Li, X. G. Materials Chemistry and Physics 2006, 100, 92 https://doi.org/10.1016/j.matchemphys.2005.12.011
  8. Park, M. S.; Lee, Y. J.; Rajendran, S.; Song, M. S.; Kim, H. S.; Lee, J. Y. Electrochim. Acta 2005, 50, 5561 https://doi.org/10.1016/j.electacta.2005.04.042
  9. Lee, H. Y.; Kim, Y. L.; Kong, M. K.; Lee, S. M. J. Power Sources 2005, 141, 159 https://doi.org/10.1016/j.jpowsour.2004.08.023
  10. Kim, J. B.; Jun, B. S.; Lee, S. M. Electrochim. Acta 2005, 50, 3390 https://doi.org/10.1016/j.electacta.2004.12.021
  11. Dong, H.; Feng, R. X.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Electrochim. Acta 2004, 49, 5217 https://doi.org/10.1016/j.electacta.2004.07.003
  12. Zuo, P.; Yin, G.; Tong, Y. Solid State Ionics 2006, 177, 3297 https://doi.org/10.1016/j.ssi.2006.09.007
  13. Kim, Y. L.; Lee, H. Y.; Jang, S. W.; Lim, S. H.; Lee, S. J.; Baik, H. K.; Yoon, Y. S.; Lee, S. M. Electrochim. Acta 2003, 48, 2593 https://doi.org/10.1016/S0013-4686(03)00302-5
  14. Kim, H.; Choi, J.; Sohn, H. J.; Kang, T. J. Electrochem. Soc. 1999, 146, 440
  15. Roberts, G. A.; Cairns, E. J.; Reimers, J. A. J. Power Sources 2002, 110, 424 https://doi.org/10.1016/S0378-7753(02)00207-0
  16. NuLi, Y.; Wang, B.; Yang, J.; Yuan, X.; Ma, Z. J. Power Sources 2005, 153, 371 https://doi.org/10.1016/j.jpowsour.2005.05.023
  17. Yoon, S.; Lee, S.; Kim, H.; Sohn, H. J. J. Power Sources 2006, 161, 1319 https://doi.org/10.1016/j.jpowsour.2006.06.035
  18. Wu, X. D.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Electrochem. Commun. 2003, 5, 935 https://doi.org/10.1016/j.elecom.2003.09.001
  19. Lee, Y. S.; Lee, J. H.; Kim, Y. W.; Sun, Y. K.; Lee, S. M. Electrochimica Acta 2006, 52, 1523 https://doi.org/10.1016/j.electacta.2006.02.052
  20. Patel, P.; Kim, I. S.; Kumta, P. N. Material Science and Engineering B 2005, 116, 347 https://doi.org/10.1016/j.mseb.2004.05.046
  21. Yun, M. S.; Jeong, K. Y.; Lee, E. W.; Doh, C. H. Bull. Korean Chem. Soc. 2006, 27, 1175 https://doi.org/10.5012/bkcs.2006.27.8.1175
  22. Yun, M. S.; Jeong, K. Y.; Lee, E. W.; Jin, B. S.; Kim, H. S.; Moon, S. I.; Doh, C. H. J. Chem. Eng. 2006, 23, 230
  23. Weydanz, W. J.; Mehrens, M. W.; Huggins, R. A. J. Power Sources 1999, 81-82, 237 https://doi.org/10.1016/S0378-7753(99)00139-1
  24. Dong, H.; Ai, X. P.; Yang, H. X. Electrochem. Commun. 2003, 5, 952 https://doi.org/10.1016/j.elecom.2003.09.004
  25. Zhang, J.; Shui, J. L.; Zhang, S. L.; Wei, X.; Xiang, Y. J.; Xie, S.; Zhu, C. F.; Chen, C. H. Journal of Alloys and Compounds 2005, 391, 212 https://doi.org/10.1016/j.jallcom.2004.08.083
  26. Jayaprakash, J. N.; Kalaiselvi, N.; Doh, C. H. Intermetallics 2007, 15, 442 https://doi.org/10.1016/j.intermet.2006.08.014
  27. Zhang, Z. N.; Huang, P. X.; Li, G. R.; Yan, T. Y.; Pan, G. L.; Gao, X. P. Electrochem. Commun. 2007, 9, 713 https://doi.org/10.1016/j.elecom.2006.10.056
  28. Rock, N. L.; Kumta, P. N. J. Power Sources 2007, 164, 829 https://doi.org/10.1016/j.jpowsour.2006.10.068
  29. Wang, K.; He, X.; Mang, L.; Ren, J.; Jiang, C.; Wan, C. Solid State Ionics 2007, 178, 115 https://doi.org/10.1016/j.ssi.2006.10.029
  30. Kalaiselvi, N.; Doh, C. H.; Park, C. W.; Moon, S. I.; Yun, M. S. Electrochem. Commun. 2004, 9, 1110

Cited by

  1. Improved Cycling Performance of Si Thin Film Anode for Lithium Rechargeable Batteries vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2441
  2. Comparative Study on Performances of Composite Anodes of SiO, Si and Graphite for Lithium Rechargeable Batteries vol.31, pp.5, 2008, https://doi.org/10.5012/bkcs.2010.31.5.1257