DOI QR코드

DOI QR Code

Photodissociation of Methane at Lyman Alpha (121.6 nm)

  • Park, Jae-Hong (Department of Chemistry, Hanyang University) ;
  • Lee, Jung-Woo (Department of Chemistry, Hanyang University) ;
  • Sim, Ki-Jo (Department of Chemistry, Hanyang University) ;
  • Han, Jin-Wook (Department of Chemistry, Hanyang University) ;
  • Yi, Whi-Kun (Department of Chemistry, Hanyang University)
  • 발행 : 2008.01.20

초록

Laser induced fluorescence studies of hydrogen atom using four wave mixing technique are reported for the photodissociation of CH4 and its isotopomers at Lya (121.6 nm). The source of dissociating and probe radiation is one and the same (delay time??20 nsec). The average translational energy of ejected hydrogen atoms (50 Kcal/mol) reveals that CH4 + hn??CH3 + H(2S) and CH4 + hn??CH2(a1A1) + H2(1Sg) are the main dissociation processes. The absolute quantum yield for CH4 and CD4 are the same, FH(CH4) = FD(CD4) = 0.31 0.05. If one divides the experimental H/D ratios from the isotopomers CH3D, CH2D2, CHD3 by the isotopic H/D ratios, a value 2 is obtained in all three cases. Overall, the heavier D atoms are more likely than the H atoms to remain attached to the carbon atom.

키워드

참고문헌

  1. Okabe, H. Photochemistry of Small Molecules; Wiley: New York, U.S.A., 1978
  2. Atreya, S. K.; Wong, M, H.; Owen, T. C.; Mahaffy, P. R.; Niemann, H. B.; dePater, J.; Drossart, P.; Encrenaz, Th. Planet. Space Sci. 1999, 47, 1243 https://doi.org/10.1016/S0032-0633(99)00047-1
  3. Detwiler, C. R.; Garrett, D. L.; Purcell, J. D.; Tousey, R. Geophys. Ann. 1961, 17, 263
  4. Slanger, T. G.; Black, G. J. Chem. Phys. 1982, 77, 2432 https://doi.org/10.1063/1.444111
  5. Mordaunt, D. H.; Lambert, I. R.; Morley, G. P.; Ashfold, M. N. R.; Dixon, R. N.; Western, C. M.; Schnieder, L.; Welge, K. H. J. Chem. Phys. 1993, 98, 2054 https://doi.org/10.1063/1.464237
  6. Heck, A. J. R.; Zare, R. N.; Chandler, D. W. J. Chem. Phys. 1996, 104, 4019 https://doi.org/10.1063/1.471214
  7. Brownsword, R. A.; Hillenkamp, M.; Laurent, T.; Vatsa, R. K.; Volpp, H. R.; Wolfrum, J. Chem. Phys. Lett. 1997, 266, 259 https://doi.org/10.1016/S0009-2614(96)01526-6
  8. Wang, J. H.; Liu, K. J. Chem. Phys. 1998, 109, 7105 https://doi.org/10.1063/1.477394
  9. Wang, J. H.; Liu, K.; Min, Z.; Su, H.; Bersohn, R.; Preses, J.; Larese, J. Z. J. Chem. Phys. 2000, 113, 4146 https://doi.org/10.1063/1.1288145
  10. Bjorklund, G. C. J. Quantum Electr. IEEE QE. 1975, 11, 187
  11. Kang, T. Y.; Kim, H. L. Bull. Korean Chem. Soc. 2006, 27(12), 1997 https://doi.org/10.5012/bkcs.2006.27.12.1997
  12. Laufer, A. H.; McNesby, J. R. Can. J. Chem. 1965, 43, 3487 https://doi.org/10.1139/v65-495
  13. Ashfold, M. N. R.; Baggot, J. E. Molecular Photodissociation Dynamics; The Royal Society of Chemistry: London, England, 1987
  14. Rebbert, R. E.; Ausloos, P. J. Photochem. 1972/1973, 1, 171 https://doi.org/10.1016/0047-2670(72)85005-6
  15. Braun, W.; Welge, K. H.; McNesby, J. R. J. Chem.Phys. 1966, 45, 2650 https://doi.org/10.1063/1.1727985
  16. Gorden, Jr. R.; Ausloos, P. J. Chem. Phys. 1967, 46, 4823 https://doi.org/10.1063/1.1840641
  17. Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1967, 47, 5146 https://doi.org/10.1063/1.1701772
  18. Braun, W.; McNesby, J. R.; Bass, A. M. J. Chem. Phys. 1967, 46, 2071 https://doi.org/10.1063/1.1841003
  19. Braun, W.; Bass, A. M.; Davis, D. D.; Simmons, J. D. Proc. Roy. Soc. 1969, A312, 417
  20. Bosnali, M. W.; Perner, D. Z. Naturforsch. 1971, 26a, 1768
  21. Yi, W.; Park, J.; Lee, J. Chem. Phys. Lett. 2007, 439, 46 https://doi.org/10.1016/j.cplett.2007.03.071
  22. Shafer, N.; Satyafal, S.; Bersohn, R. J. Chem. Phys. 1989, 90, 6807 https://doi.org/10.1063/1.456302
  23. Lee, L. C.; Chiang, C. C. J. Chem. Phys. 1983, 78, 688 https://doi.org/10.1063/1.444812
  24. Lee, L. C. J. Chem. Phys. 1980, 72, 6414 https://doi.org/10.1063/1.439140

피인용 문헌

  1. Photolysis of methane revisited at 121.6 nm and at 118.2 nm: quantum yields of the primary products, measured by mass spectrometry vol.13, pp.18, 2011, https://doi.org/10.1039/c0cp02627a
  2. Laboratory studies of photochemistry and gas phase radical reaction kinetics relevant to planetary atmospheres vol.41, pp.19, 2012, https://doi.org/10.1039/c2cs35204d
  3. Methane ice photochemistry and kinetic study using laser desorption time-of-flight mass spectrometry at 20 K vol.17, pp.26, 2015, https://doi.org/10.1039/C5CP00578G
  4. Photodissociation Dynamics of C2H4BrCl: Nonadiabatic Dynamics with Intrinsic Cs Symmetry vol.30, pp.12, 2008, https://doi.org/10.5012/bkcs.2009.30.12.2962
  5. Comparison of quantum Monte Carlo with time-dependent and static density-functional theory calculations of diamondoid excitation energies and Stokes shifts vol.84, pp.24, 2011, https://doi.org/10.1103/physrevb.84.245315
  6. Fragmentation of Molecules by Virtual Photons from Remote Neighbors vol.11, pp.None, 2008, https://doi.org/10.1021/acs.jpclett.0c02259
  7. Mechanisms for gas-phase molecular formation of neutral formaldehyde (H2CO) in cold astrophysical regions vol.656, pp.None, 2021, https://doi.org/10.1051/0004-6361/202141616