DOI QR코드

DOI QR Code

Porphyrin-Cored Arylether Dendrimers with Vinyl Groups in the Periphery

  • Lim, So-Yeon (Department of Chemistry, Sunchon National University) ;
  • Choi, Dae-Ock (Department of Chemistry, Sunchon National University) ;
  • Shin, Eun-Ju (Department of Chemistry, Sunchon National University)
  • Published : 2008.07.20

Abstract

Benzyl arylether dendrimers with zinc porphyrin core and terminal vinyl groups have been synthesized and their photophysical properties and the influence of dendritic environments were investigated. Free base porphyrin-cored benzyl arylether dendrimers 1a-1c and 3a-3c, and their zinc derivatives 2a-2c and 4a-4c have been prepared. Absorption spectra are similar for all porphyrin-cored benzyl arylether dendrimers, except that absorption intensity at 280 nm increases in the higher generation of dendrimer. Fluorescence spectra are similar with two bands for all free base porphyrin dendrimers 1a-1c and 3a-3c, although fluorescence intensity ratio of shorter wavelength emission band to longer wavelength band varies with the generation of dendrimer. Emission efficiencies of 1a-1c and 3a-3c are lower than that of TTP. Emission efficiencies of 2a-2c and 4a-4c are higher than that of ZnTTP. Absorption and emission properties of 1a-1c, 2a-2c, 3a-3c, and 4a-4c were affected negligibly with dendritic environments.

Keywords

References

  1. Fox, M. A.; Chanon, M. Photoinduced Electron Transfer Part AD; Elsevier: Amsterdam, 1988
  2. Wasielewski, M. R. Chem. Rev. 1992, 92, 435 https://doi.org/10.1021/cr00011a005
  3. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26, 198 https://doi.org/10.1021/ar00028a010
  4. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40 https://doi.org/10.1021/ar9801301
  5. Guldi, D. M. Chem. Soc. Rev. 2001, 31, 22 https://doi.org/10.1039/b106962b
  6. Imahori, H. Org. Biomol. Chem. 2004, 2, 1425 https://doi.org/10.1039/b403024a
  7. Newkome, G. R.; Moorefield, C. N.; Vogtle, F. Dendrimers and Dendrons-Concepts, Synthesis, Applications; Wiley-VCH: Weinheim, 2001
  8. Balzani, V.; Ceroni, P.; Juris, A.; Venturi, M.; Campagna, S.; Puntoriero, F.; Serroni, S. Coord. Chem. Rev. 2001, 219-221, 545 https://doi.org/10.1016/S0010-8545(01)00351-4
  9. Kozaki, M.; Akita, K.; Suzuki, S.; Okada, K. Org. Lett. 2007, 9, 3315 https://doi.org/10.1021/ol071296h
  10. Larsen, J.; Brueggemann, B.; Sly, J.; Crossley, M. J.; Sundstroem, V.; Aakesson, E. Chem. Phys. Lett. 2006, 433, 159 https://doi.org/10.1016/j.cplett.2006.11.006
  11. Campidelli, S.; Sooambar, C.; Diz, E. L.; Ehli, C.; Guldi, D. M.; Prato, M. J. Am. Chem. Soc. 2006, 128, 12544 https://doi.org/10.1021/ja063697i
  12. Li, W.-S.; Kim, K. S.; Jiang, D.-L.; Tanaka, H.; Kawai, T.; Kwon, J. H.; Kim, D.; Aida, T. J. Am. Chem. Soc. 2006, 128, 10527 https://doi.org/10.1021/ja063081t
  13. Cho, S.; Li, W.-S.; Yoon, M.-C.; Ahn, T. K.; Jiang, D.-L.; Kim, J.; Aida, T.; Kim, D. Chem.-Eur. J. 2006, 12, 7576 https://doi.org/10.1002/chem.200600213
  14. Oar, M. A.; Dichtel, W. R.; Serin, J. M.; Frechet, J. M. J.; Rogers, J. E.; Slagle, J. E.; Fleitz, P. A.; Tan, L.-S.; Ohulchanskyy, T. Y.; Prasad, P. N. Chem. Mater. 2006, 18, 3682 https://doi.org/10.1021/cm0606070
  15. Ogasawara, S.; Ikeda, A.; Kikuchi, J.-i. Chem. Mater. 2006, 18, 5982 https://doi.org/10.1021/cm061812i
  16. Figueira-Duarte, T. M.; Clifford, J.; Amendola, V.; Gegout, A.; Olivier, J.; Cardinali, F.; Meneghetti, M.; Armaroli, N.; Nierengarten, J.-F. Chem. Commun. 2006, 2054
  17. Flamigni, L.; Talarico, A. M.; Ventura, B.; Sooambar, C.; Solladie, N. Eur. J. Inorg. Chem. 2006, 2155
  18. Mo, Y.-J.; Jiang, D.-L.; Uyemura, M.; Aida, T.; Kitagawa, T. J. Am. Chem. Soc. 2005, 127, 10020 https://doi.org/10.1021/ja042196z
  19. Capitosti, G. J.; Cramer, S. J.; Rajesh, C. S.; Modarelli, D. A. Org. Lett. 2001, 3, 1645 https://doi.org/10.1021/ol015837t
  20. Sadamoto, R.; Tomioka, N.; Aida, T. J. Am. Chem. Soc. 1996, 118, 3978 https://doi.org/10.1021/ja952855v
  21. Tsuda, A.; Alam, M. A.; Harada, T.; Yamaguchi, T.; Ishii, N. Angew. Chem. Int. Ed. 2007, 46, 8198 https://doi.org/10.1002/anie.200703083
  22. Lee, D.-I.; Goodson, T., III J. Phys. Chem. B 2006, 110, 25582 https://doi.org/10.1021/jp066767g
  23. Li, Y.; Rizzo, A.; Salerno, M.; Mazzeo, M.; Huo, C.; Wang, Y.; Li, K.; Cingolani, R.; Gigli, G. Appl. Phys. Lett. 2006, 89, 1
  24. Oh, J. B.; Kim, Y. H.; Nah, M. K.; Kim, H. K. J. Luminescence 2005, 111, 255 https://doi.org/10.1016/j.jlumin.2004.10.006
  25. Shinoda, S. J. Inclusion Phenom. Macrocycl. Chem. 2007, 59, 1 https://doi.org/10.1007/s10847-007-9315-2
  26. Li, W.-S.; Jiang, D.-L.; Suna, Y.; Aida, T. J. Am. Chem. Soc. 2005, 127, 7700 https://doi.org/10.1021/ja0513335
  27. Zimmerman, S. C.; Wendland, M. S.; Rakow, N. A.; Zharov, I.; Suslick, K. S. Nature 2002, 418, 399 https://doi.org/10.1038/nature00877
  28. Oar, M. A.; Serin, J. M.; Dichtel, W. R.; Frechet, J. M. J.; Ohulchanskyy, T. Y.; Prasad, P. N. Chem. Mater. 2005, 17, 2267 https://doi.org/10.1021/cm047825i
  29. Kernag, C. A.; McGrath, D. V. Chem. Commun. 2003, 1048
  30. Chavan, S. A.; Maes, W.; Gevers, L. E. M.; Wahlen, J.; Vankelecom, I. F. J.; Jacobs, P. A.; Dehaen, W.; De Vos, D. E. Chem.-Eur. J. 2005, 11, 6754 https://doi.org/10.1002/chem.200500251
  31. Wendland, M. S.; Zimmerman, S. C. J. Am. Chem. Soc. 1999, 121, 1389 https://doi.org/10.1021/ja983097m
  32. Shin, E. J.; Kim, D. J. Photochem. Photobiol. A: Chemistry 2002, 152, 25 https://doi.org/10.5012/bkcs.2006.27.5.751
  33. Shin, E. J. Bull. Korean Chem. Soc. 2006, 27, 751 https://doi.org/10.5012/bkcs.2006.27.5.751
  34. Proni, G.; Pescitelli, G.; Huang, X.; Nakanishi, K.; Berova, N. J. Am. Chem. Soc. 2003, 125, 12914 https://doi.org/10.1021/ja036294g
  35. Shon, Y.-S.; Choi, D. Chem. Lett. 2006, 644 https://doi.org/10.5012/bkcs.2007.28.6.983
  36. Choi, D.; Lee, J.-h.; Shin, K.-h.; Shin, E. J. Bull. Korean Chem. Soc. 2007, 28, 983 https://doi.org/10.5012/bkcs.2007.28.6.983

Cited by

  1. Zinc Porphyrin-Cored Dendrimers; Axial Coordination of Pyridine and Photoinduced Electron Transfer to Methyl Viologen vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4247
  2. Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review vol.3, pp.39, 2015, https://doi.org/10.1039/C5TA05082K
  3. Metal Chelate Monomers as Precursors of Polymeric Materials vol.26, pp.6, 2016, https://doi.org/10.1007/s10904-016-0418-3
  4. Facile Preparation of Hybrid Zinc Porphyrin Dendrimer Using Coordination Complex vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10677
  5. Synthetic Aspects of Porphyrin Dendrimers vol.2009, pp.28, 2009, https://doi.org/10.1002/ejoc.200900512
  6. Trans–cis isomerization of arylether dendrimers with azobenzene core and terminal hydroxy groups vol.77, pp.2, 2010, https://doi.org/10.1016/j.saa.2010.06.022
  7. Solvent-dependent Photoreactions of Porphyrin-Spiropyran Dyad: Ring-opening or Protonation vol.34, pp.10, 2008, https://doi.org/10.5012/bkcs.2013.34.10.3125