DOI QR코드

DOI QR Code

The Studies on Molecular Geometries and Electronic Structures of Substituted meso-Catecholic Porphyrins: DFT Methods and NSD

  • Park, Seung-Hyun (Department of Chemistry, Institute of Functional Materials, Inje University) ;
  • Kim, Su-Jin (Department of Chemistry, Institute of Functional Materials, Inje University) ;
  • Kim, Jin-Dong (Department of Chemistry, Institute of Functional Materials, Inje University) ;
  • Park, Sung-Bae (Department of Chemistry, Institute of Functional Materials, Inje University) ;
  • Huh, Do-Sung (Department of Chemistry, Institute of Functional Materials, Inje University) ;
  • Shim, Yong-Key (School of Nano Engineering, Inje University) ;
  • Choe, Sang-Joon (Department of Chemistry, Institute of Functional Materials, Inje University)
  • Published : 2008.06.20

Abstract

Geometry optimizations and electronic structure calculations are reported for meso-tetraphenyl porphyrin (TPP) and a series of meso-substituted catecholic porphyrins (KP99150, KP99151, KP99152, KP99153, and KP99090) using density functional theory (DFT). The calculated B3LYP//RHF bond lengths are slightly longer than those of LSDA//RHF. The calculated electronic structures clearly show that TPP and meso-catecholic group contribute to π-electron conjugation along porphyrin ring for HOMO and LUMO, significantly reduced the HOMO-LUMO gap. The wavelength due to B3LYP energy gaps is favored with experimental value in Soret (B), and LSDA energy gaps are favored with experimental value in visible bands (Q). The electronic effect of the catecholic groups is to reduced energies of both the HOMOs and LUMOs. However, the distortion of porphyrin predominantly raises the energies of the HOMOs, so the net result is a large drop in HOMO and smaller drop in LUMO energies upon meso-substituted catecholic group of the porphyrin macrocycle as shown in KP99151 and KP99152 of Figure 5(a). These results are in reasonable agreement with normal-coordinate structural decomposition (NSD) results. The HOMO-LUMO gap is an important factor to consider in the development of photodynamic therapy (PDT).

Keywords

References

  1. Ghosh, A. In The Porphyrin Handbook; Kardish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, p 1
  2. Shelnutt, J. A. In The Porphyrin Handbook; Kardish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, 167
  3. Wasielewski, M. R. Chem. Rev. 1992, 92, 435 https://doi.org/10.1021/cr00011a005
  4. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40 https://doi.org/10.1021/ar9801301
  5. Jasat, A.; Dolphin, D. Chem. Rev. 1997, 97, 2267 https://doi.org/10.1021/cr950078b
  6. Ali, H.; van Lier, J. E. Chem. Rev. 1999, 99, 2379 https://doi.org/10.1021/cr980439y
  7. Galezowski, M.; Gryko, D. T. J. Org. Chem. 2006, 71, 5942 https://doi.org/10.1021/jo060545x
  8. Paney, R. K.; Zheng, G. In The Porphyrin Handbook; Kardish, K. M.; Smith, K. M.; Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 6, 159
  9. Edwards, L.; Dolphin, D. H.; Gouterman, M.; Adler, A. D. J. Mol. Spectrosc. 1971, 38, 16 https://doi.org/10.1016/0022-2852(71)90090-7
  10. Gouterman, M. J. Mol. Spectrosc. 1961, 6, 138 https://doi.org/10.1016/0022-2852(61)90236-3
  11. Takeuchi, T.; Gray, H. B.; Goddard III, W. A. J. Am. Chem. Soc. 1994, 116, 9730 https://doi.org/10.1021/ja00100a043
  12. Wang, Z.; Day, P. N.; Pachter, R. J. Chem. Phys. 1998, 108, 2504 https://doi.org/10.1063/1.475633
  13. Shelnutt, J. A.; Song, X. Z.; Ma, J. G.; Jia, S. L.; Jentzen, W.; Medforth, C. J. Chem. Soc. Rev. 1998, 27, 31 https://doi.org/10.1039/a827031z
  14. Jentzen, W.; Ma, J. G.; Shelnutt, J. A. Biophys. J. 1998, 74, 753 https://doi.org/10.1016/S0006-3495(98)74000-7
  15. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864 https://doi.org/10.1103/PhysRev.136.B864
  16. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133 https://doi.org/10.1103/PhysRev.140.A1133
  17. Pople, J. A.; Gill, P. M. W. Chem. Phys. Lett. 1992, 199, 557 https://doi.org/10.1016/0009-2614(92)85009-Y
  18. Johnson, B. G.; Frisch, M. J. J. Chem. Phys. 1994, 100, 7429 https://doi.org/10.1063/1.466887
  19. Vosko, S. J.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200 https://doi.org/10.1139/p80-159
  20. Becke, A. D. J. Chem. Phys. 1993, 98, 5648 https://doi.org/10.1063/1.464913
  21. Becke, A. D. J. Chem. Phys. 1996, 104, 1040 https://doi.org/10.1063/1.470829
  22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Peterson, G. A.; Montgometry, J. A.; Raghavacari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. J.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. L.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 1999
  23. Lauher, J. W.; Ibers, J. A. J. Am. Chem. Soc. 1973, 95, 5148 https://doi.org/10.1021/ja00797a009
  24. Rani, V. R.; Kishan, M. R.; Kulkarni, S. J.; Raghavan, K. V. Catal. Comm. 2005, 6, 531 https://doi.org/10.1016/j.catcom.2005.04.009
  25. Song, Y.; Haddad, R. E.; Jia, S. L.; Hok, S.; Olmstead, M. M.; Nurco, D. J.; Schore, N. E.; Zhang, J.; Ma, J. G.; Smith, K. M.; Gazeau, S.; Pecaut, J.; Marchon, J. C.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc. 2005, 127, 1179 https://doi.org/10.1021/ja045309n

Cited by

  1. Molecular Geometries and Electronic Structures of Methyl Pyropheophorbide-a and (Cationic) Tropolonyl Methyl Pyropheophorbides: DFT Calculation vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.205
  2. The spectroscopy of jet-cooled porphyrins: an insight into the vibronic structure of the Q band vol.14, pp.4, 2010, https://doi.org/10.1142/s1088424610002094