DOI QR코드

DOI QR Code

Pyridinolysis of O-Aryl Phenylphosphonochloridothioates in Acetonitrile

  • Published : 2008.09.30

Abstract

fThe kinetics and mechanism of the reactions of Y-O-aryl phenylphosphonochloridothioates with X-pyridines are investigated in acetonitrile at 35.0 ${^{\circ}C}$. The negative value of the cross-interaction constant, $\rho$XY = −0.46, indicates that the reaction proceeds by concerted $S_N2$ mechanism. The observed $k_H/k_D$ values involving d-5 pyridine ($C_5D_5N$) nucleophiles are greater than unity (1.05-1.11). The net primary deuterium kinetic isotope effects, $(k_H/k_D)_{net}$ = 1.28-1.35, excluding the increased $pK_a$ effect of d-5 pyridine are obtained. The transition state with a hydrogen bond between the leaving group Cl and the hydrogen (deuterium) atom in the C-H(D) is suggested for the studied reaction system.

Keywords

References

  1. Thatcher, G. R. J. Adv. Phys. Org. Chem. 1989, 25, 99 https://doi.org/10.1016/S0065-3160(08)60019-2
  2. Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Chapter 7-8
  3. Hengge, A. C. Acc. Chem. Res. 2002, 35, 105 https://doi.org/10.1021/ar000143q
  4. Hengge, A. C. Adv. Phys. Org. Chem. 2005, 40, 49 https://doi.org/10.1016/S0065-3160(05)40002-7
  5. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61 https://doi.org/10.2174/1385272053369349
  6. Kumara Swamy, K. C.; Satish Kumar, N. Acc. Chem. Res. 2006, 39, 324 https://doi.org/10.1021/ar050188x
  7. Zalatan, J. F.; Catrina, I.; Mitchell, R.; Grzyska, P. K.; O'Brien, P. J.; Herschlay, D.; Hengge, A. C. J. Am. Chem. Soc. 2007, 129, 9789 https://doi.org/10.1021/ja072196+
  8. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715 https://doi.org/10.1021/jo061308x
  9. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539 https://doi.org/10.1039/b712427a
  10. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12 https://doi.org/10.1021/jo990671j
  11. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215 https://doi.org/10.1021/jo0162742
  12. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135 https://doi.org/10.5012/bkcs.2003.24.8.1135
  13. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797 https://doi.org/10.5012/bkcs.2007.28.10.1797
  14. Adhikary, K. K.; Lumbiny, B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 851 https://doi.org/10.5012/bkcs.2008.29.4.851
  15. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765
  16. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632 https://doi.org/10.1002/kin.10081
  17. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493 https://doi.org/10.1021/jo0700934
  18. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936 https://doi.org/10.5012/bkcs.2007.28.6.936
  19. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003 https://doi.org/10.5012/bkcs.2007.28.11.2003
  20. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944 https://doi.org/10.1039/b713167d
  21. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544 https://doi.org/10.1002/poc.1314
  22. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162 https://doi.org/10.1021/ja001814i
  23. Lee, I. Chem. Soc. Rev. 1990, 19, 317 https://doi.org/10.1039/cs9901900317
  24. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
  25. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529 https://doi.org/10.1135/cccc19991529
  26. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 https://doi.org/10.1021/cr00002a004
  27. Albert, A.; Serjeant, E. P. The Determination of Ionization Constants, 3rd ed.; Chapman and Hall: New York, 1984
  28. Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Chapter 8
  29. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4
  30. Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287 https://doi.org/10.1002/9780470171950.ch6
  31. Onyido, I.; Albright, K.; Buncel, E. Org. Biomol. Chem. 2005, 3, 1468 https://doi.org/10.1039/b501537e
  32. Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440 https://doi.org/10.1139/v89-220
  33. Dunn, E. J.; Moir, R. T.; Buncel, E.; Purdon, J. G.; Bannard, R. A. B. Can. J. Chem. 1990, 68, 1837 https://doi.org/10.1139/v90-286
  34. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601 https://doi.org/10.1039/b314886f
  35. Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431 https://doi.org/10.1021/j100175a004
  36. Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008 https://doi.org/10.1021/ja038343v
  37. Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641 https://doi.org/10.1021/ja0511927
  38. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703 https://doi.org/10.1021/ja0501565
  39. Holtz, K. M.; Catrina, I. E.; Hengge, A. C.; Kantrowitz, E. R. Biochemistry 2000, 39, 9451 https://doi.org/10.1021/bi000899x
  40. Liu, Y.; Gregersen, B. A.; Hengge, A. C.; York, D. M. Biochemistry 2006, 45, 10043 https://doi.org/10.1021/bi060869f
  41. Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M. D. J. Am. Chem. Soc. 1997, 119, 5477 https://doi.org/10.1021/ja964217y
  42. Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178 https://doi.org/10.1021/ja035167h
  43. Oivanen, M.; Ora, M.; Lonnberg, H. Collect. Czech. Chem. Commun. 1996, 61, S-1 https://doi.org/10.1135/cccc19960001
  44. Melander, L.; Saunders, W. H., Jr. Reaction Rates of Isotopic Molecules; Wiley-Interscience: New York, 1980
  45. Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526 https://doi.org/10.1021/ja00085a037
  46. Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178
  47. Li, Y.; Bao, R.; Zhang, Z.; Yang, J.; Cao, J.; Jiang, X. Huaxue Xuebao 1987, 45(7), 696
  48. Tsao, L.; Chzhou, Ch.; Sun, Ts.; Koroteev, A. M. Russian J. Org. Chem. 2003, 39(11), 1608 https://doi.org/10.1023/B:RUJO.0000013135.25430.40
  49. Purnanand; Batra, B. S. Indian J. Chem. 1992, 31B(11), 778
  50. Purnanand; Batra, B. S.; Lal, G. Tetrahedron Letters 1994, 35(26), 4641 https://doi.org/10.1016/S0040-4039(00)60751-7

Cited by

  1. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
  2. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1625
  3. Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1939
  4. Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1945
  5. Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
  6. Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2805
  7. Kinetics and mechanism of the anilinolyses of aryl dimethyl, methyl phenyl and diphenyl phosphinates vol.9, pp.3, 2011, https://doi.org/10.1039/C0OB00517G
  8. Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
  9. Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
  10. Pyridinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.325
  11. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  12. Pyridinolyses of O-Propyl and O-Isopropyl Phenyl Phosphonochloridothioates in Acetonitrile vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2811
  13. -Ethyl Phenyl Phosphonochloridothioates in Acetonitrile vol.45, pp.5, 2013, https://doi.org/10.1002/kin.20773
  14. Nucleophilic Substitution Reactions of O-Methyl N,N-Diisopropylamino Phosphonochloridothioate with Anilines and Pyridines vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1016
  15. Concerted Pathway to the Mechanism of the Anilinolysis of Bis(N,N-diethylamino)phosphinic Chloride in Acetonitrile vol.70, pp.1, 2017, https://doi.org/10.1071/CH16202
  16. Concurrent primary and secondary deuterium kinetic isotope effects in anilinolysis of O-aryl methyl phosphonochloridothioates vol.7, pp.14, 2009, https://doi.org/10.1039/b903148k
  17. Anilinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.2065
  18. Theoretical Study of 31 P NMR Chemical Shifts for Organophosphorus Esters, Their Anions and O,O-Dimethylthiophosphorate Anion with Metal Complexes vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2252
  19. Evidence for Hypervalent Intermediate in Aminolysis Reaction of Ethylbenzene Sulfinate vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.493
  20. Kinetics and Mechanism of the Aminolysis of Dimethyl Thiophosphinic Chloride with Anilines vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.975
  21. Sn2/E2 Branching in Protic Solvents: A Mechanistic Study vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1535
  22. Aminolysis of Methylbenzene Sulfinate: Definitive Evidence for a Stepwise Mechanism vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1893
  23. A Kinetic Study on Aminolysis of 2-Pyridyl X-Substituted Benzoates: Effect of Changing Leaving Group from 4-Nitrophenolate to 2-Pyridinolate on Reactivity and Mechanism vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3588
  24. Kinetics and Mechanism of the Pyridinolyses of Dimethyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile vol.31, pp.12, 2008, https://doi.org/10.5012/bkcs.2010.31.12.3856
  25. Anilinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.31, pp.5, 2008, https://doi.org/10.5012/bkcs.2010.31.5.1403
  26. Nonlinear Hammett plots in pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates: change in RDS versus resonance contribution vol.8, pp.16, 2008, https://doi.org/10.1039/c0ob00031k
  27. Kinetic and Theoretical Studies on Pyridinolysis of 2,4-Dinitrophenyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Mechanism vol.31, pp.9, 2008, https://doi.org/10.5012/bkcs.2010.31.9.2593
  28. Kinetics and mechanism of the pyridinolyses of dimethyl and diethyl chloro(thiono)phosphates in acetonitrile vol.23, pp.11, 2008, https://doi.org/10.1002/poc.1709
  29. Kinetics and mechanism of the pyridinolysis of N‐aryl‐P,P‐diphenyl phosphinic amides in dimethyl sulfoxide vol.24, pp.6, 2011, https://doi.org/10.1002/poc.1788
  30. Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2008, https://doi.org/10.5012/bkcs.2011.32.11.3947
  31. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  32. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2008, https://doi.org/10.5012/bkcs.2011.32.12.4304
  33. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2008, https://doi.org/10.5012/bkcs.2011.32.12.4387
  34. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2008, https://doi.org/10.5012/bkcs.2011.32.12.4403
  35. Pyridinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.32, pp.2, 2008, https://doi.org/10.5012/bkcs.2011.32.2.709
  36. Theoretical Study of Phosphoryl Transfer Reactions vol.32, pp.3, 2008, https://doi.org/10.5012/bkcs.2011.32.3.889
  37. Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2008, https://doi.org/10.5012/bkcs.2011.32.6.1997
  38. Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile vol.32, pp.4, 2008, https://doi.org/10.5012/bkcs.2011.32.4.1138
  39. Kinetics and Mechanism of the Pyridinolysis of O-Aryl Methyl Phosphonochloridothioates in Acetonitrile vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1375
  40. Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.7, 2008, https://doi.org/10.5012/bkcs.2011.32.7.2306
  41. Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2339
  42. Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.8, 2008, https://doi.org/10.5012/bkcs.2011.32.8.2628
  43. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3245
  44. Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.32, pp.9, 2008, https://doi.org/10.5012/bkcs.2011.32.9.3355
  45. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
  46. Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3743
  47. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2008, https://doi.org/10.5012/bkcs.2012.33.3.1055
  48. Kinetics and Mechanism of the Anilinolysis of Aryl N,N-Dimethyl Phosphoroamidochloridates in Acetonitrile vol.35, pp.3, 2008, https://doi.org/10.5012/bkcs.2014.35.3.753
  49. Linear free energy relationship and deuterium kinetic isotope effect observed on phospho and thiophosphoryl transfer reactions in some organophosphorous compounds vol.495, pp.1, 2014, https://doi.org/10.1088/1742-6596/495/1/012004