Do Han Kim et al.

Control over [2+2+2] and Carbonylative [4+2] Cycloaddition by CO Pressure in Co-Catalyzed Cycloaddition between Internal Diynes and Cyclopentadiene

Do Han Kim, Young Keun Chung,* and Jin Wook Han***

Intelligent Textile System Research Center, and Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea. E-mail: ykchung@snu.ac.kr [†]Department of Chemistry, Hanyang University, Seoul 133-791, Korea. ^{*}E-mail: jwhan@hanyang.ac.kr

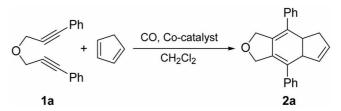
Received March 18, 2008

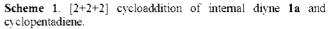
The reaction of internal dignes and cyclopentadiene in the presence of 5 mol % of cobalt catalysts proceeded under 5 atm of carbon monoxide pressure to give a high yield of the corresponding [2+2+2] cycloaddition product. By lowering carbon monoxide pressure from 30 atm to 5atm, cyclopentadiene can be used as a dienophile in the cobalt carbonyl-catalyzed [2+2+2] cycloaddition reaction between internal dignes and cyclopentadiene.

Key Words : [2+2+2] Cycloaddition, Diyne. Cobalt catalyst

Introduction

Cobalt-catalyzed or -mediated [2+2+2] cycloaddition has been an important step in the preparation of useful organic molecules.^{1,2} The cobalt-catalyzed cycloaddition of three unsaturated C-C bonds with a high degree of chemo-, regio-, and stereoselectivity led to the synthesis of several natural and unnatural products.³ A number of acetylenes and heterocyclic olefins have been utilized as cyclization partners.⁴ whereas the use of simple alkenes is uncommon in these cycloaddition reactions.⁵ In particular, use of conjugated dienes as a dienophile in the [2+2+2] cycloaddition has not been reported yet, as far as we are aware.


On our continuous efforts for synthesis of polycyclic compounds utilizing the Pauson-Khand reaction.⁶ we found that reaction pathways could be changed simply by varying CO pressure in the cobalt-catalyzed cycloaddition reaction of diynes in the presence of cyclopentadiene. Recently, we reported that Co-catalyzed tandem carbonylative cyclization of internal diynes in the presence of cyclopentadiene under 30 atm of CO pressure afforded tetracyclic enone compounds, in which reaction carbon monoxide took a part at the first step of the tandem reaction.^{6a} On the other hand, we also found that only simple [2+2+2] cycloadducts of an internal diyne and cyclopentadiene in a similar reaction condition under 5 atm of CO pressure were obtained (Figure 1).⁷


We decided to examine the reaction carefully focusing on the pressure of carbon monoxide and found that cyclopentadiene could be used as a dienophile in cobalt-catalyzed [2+2+2] cycloaddition under a low pressure of CO. Herein, we report the Co₂(CO)₈-catalyzed intermolecular [2+2+2] cycloaddition of internal diynes and cyclopentadiene under a low pressure of carbon monoxide.

Results and Discussion

In order to investigate the influence of CO pressure and to optimize reaction conditions, the CO pressure, the cobalt-catalysts, and the reaction temperature were screened for cobalt-catalyzed [2+2+2] cycloaddition of bis(1-phenyl-1-propynyl) ether (1a) and cyclopentadiene (Scheme 1 and Table 1).

As expected, no reaction was observed without any cobalt-catalysts (entry 1 in Table 1). The [2+2+2] cyclo-adduct **2a** was not obtained in the presence of the well-known catalyst.² CpCo(CO)₂, either, whereas **2a** was obtained in 75% yield without any other product in the presence of

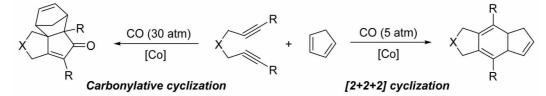
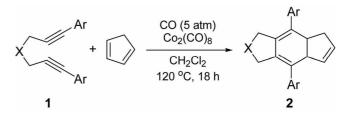


Figure 1. Different reaction pathways attained by varying CO pressure in the Co-catalyzed cyclization of internal divines in the presence of cyclopentadiene.


Table 1. [2+2+2] Cycloaddition of internal diyne 1a and cyclopentadiene"

Entry	Catalyst	CO (atm)	Temp (°C)	Yield $(\%)^b$
1	-	5	120	_c
2	CpCo(CO) ₂	5	120	_ ^c
3	$Co_2(CO)_8$	5	120	75
4	$Co_2(CO)_8$	_d	120	2
5	$Co_2(CO)_8$	_e	120	35
6	$Co_2(CO)_8$	2	120	49
7	$Co_2(CO)_8$	10	120	38/
8	$Co_2(CO)_8$	5	80	19

^aReactions were carried out with 1a (0.8 mmol). CpH (4.0 mmol), and appropriate CO pressure with 5 mol % of Co-catalyst in CH₂Cl₂ (30 mL) for 18 h. ^bIsolated yield. No reaction. ^aUnder 1 atm of N₂. ^cUnder 5 atm of N₂. ^fTandem carbonylative cyclization product was obtained additionally in 19% yield.

Co₂(CO)₈ under 5 atm of CO (entries 2 and 3 in Table 1). Because carbon monoxide did not participate in the cycloaddition reaction as a cyclization partner, it was necessary to determine the importance of CO in the reaction. Thus, reactions were carried out under nitrogen pressure instead of CO pressure (entries 4 and 5 in Table 1). Under 1 atm of N_2 pressure, a stoichiometric reaction occurred to give 2% vield based on the divne used or 40% yield based on the cobalt carbonyl used. Interestingly, the reaction under 5 atm of N₂ pressure was revealed to be a catalytic reaction giving an improved vield of 35%. These results indicate that the increased nitrogen pressure may help regeneration and/or stability of catalytic species. The optimum pressure of CO was found to be 5 atm for this [2+2+2] cycloaddition (entries 3, 6, and 7 in Table 1). As CO pressure increased from 2 atm to 5 atm. the yield increased from 49% to 75%. The role of CO pressure in the reaction would also be related to regeneration and/or stability of the catalyst. However, a CO pressure higher than 5 atm was not beneficial to the [2+2+2]cycloaddition. Under 10 atm of CO pressure, a carbonylative cycloaddition product in 19% vield was obtained additionally in company with 2a in 38% yield. The carbonylative cycloaddition product was characterized as the same product synthesized by the Pauson-Khand reaction and subsequent [4+2] cvcloaddition of 1a and cyclopentadiene in a tandem fashion.^{6a} As previously reported, the tandem carbonylative evcloaddition was the main reaction pathway under CO pressure higher than 10 atm.⁶ Catalytic activity was also decreased by lowering the reaction temperature from 120 °C to 80 °C (entry 8 in Table 1).

These results in Table 1 show that reaction pathways can be changed simply by varying CO pressure in the cobalt carbonyl-catalyzed cycloaddition reaction of internal diyne 1a in the presence of cyclopentadiene. By lowering CO pressure to 5 atm, carbon monoxide did not take part in the reaction to give the [2+2+2] cycloadduct without producing the carbonylative cycloadduct of which CO was one of the components. It is intriguing that the pressure of CO in such a narrow range can be used to control the cycloaddition outcome.

Scheme 2. $Co_2(CO)_8$ -catalyzed [2+2+2] cycloaddition of internal diynes 1 and CpH.

Table 2. $Co_2(CO)_8$ -catalyzed [2+2+2] cycloaddition of internal diynes 1 and CpH^a

Entry	Х	Ar	Diyne	Cycloadduct	Yield $(\%)^b$
1	0	Ph	1a	2a	75
2	0	$4-MeC_6H_4$	1b	2 b	72
3	0	$4-FC_6H_4$	1c	2c	58
4	TsN	Ph	1d	2d	89
5	H ₂ C	Ph	1e	2e	18
6	$(MeO_2C)_2C$	Ph	1 f	2f	89

^aReactions were carried out with 1 (0.8 mmol), CpH (4.0 mmol), and 5 atm of CO pressure with 5 mol ${}^{\circ}_{\circ}$ of Co₂(CO)₈ in CH₂Cl₂ (30 mL) for 18 h. ^bIsolated yield.

Cobalt carbonyl-catalyzed [2+2+2] cycloaddition between cyclopentadiene and internal diynes having various tether groups and aryl substituents at both alkyne termini were examined under the optimized reaction conditions for **1a** (Scheme 2 and Table 2).⁷

Cobalt carbonyl-catalyzed [2+2+2] cycloaddition reactions of propargyl ether derivatives having aryl groups with either electron-donating or electron-withdrawing substituents at both of alkyne termini afforded the desired product in good yields (entries 1-3 in Table 2). For these oxygen-tethered internal divnes, the divne with electron-withdrawing aryl substituents showed a lower catalytic reactivity than that with electron-donating arvl substituents. For a nitrogentethered internal divne (1d) and a guaternary carbon-tethered divne (1f) with phenyl substituents, the reactions proceeded well to give the corresponding cycloadduct in good yields (entry 4 and 6 in Table 2). However, the [2+2+2] cycloaddition between 1.7-diphenyl-1.6-heptadiyne (1e) and cyclopentadiene showed a significantly decreased catalytic reactivity (entry 5 in Table 2). The reaction gave only 18% of the cycloadduct 2e and the starting diyne 1e was recovered intact.

Although the precise reaction mechanism of Co-catalyzed [2+2+2] cycloaddition and carbonylative [4+2] cycloaddition between internal diynes and cyclopentadiene under CO pressure has not been revealed yet, an explanation for variability in the reaction pathways according to CO pressure may be provided from the results investigated here (Figure 2).

It is assumed that the effect of CO pressure on the transformation of a cobaltacyclopentadiene intermediate I into each of the cycloadducts will play a major role in determining the reaction routes. If the CO pressure is not high enough Under 5 atm of CO Pressure:Under 30 atm of CO Pressure:[2+2+2] CycloadditionCarbonylative [4+2] cycloaddition

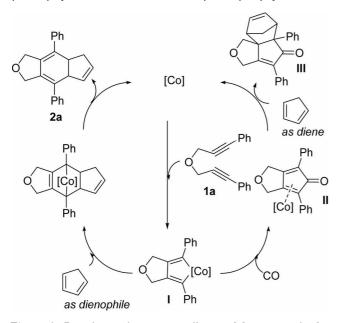
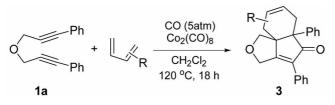



Figure 2. Reaction pathways according to CO pressure in Cocatalyzed cycloaddition between internal diynes and cyclopentadiene.

to insert carbon monoxide into the Co-C bond of the intermediate I, then cobaltacyclopentadiene will act as a diene⁸ and participate in the cyclization with a double bond of cyclopentadiene producing the [2+2+2] cycloadduct **2a**. On the contrary, the cobaltacyclopentadiene intermediate I will be transformed into a cyclopentadienone intermediate II under a high pressure of CO, and then the intermediate II acts as a dienophile⁹ to react with cyclopentadiene in a tandem fashion producing the carbonylative [4+2] cycloadduct **III**.

According to the explanation of reaction pathways, cyclopentadiene acted as a dienophile¹⁰ during the [2+2+2] cycloaddition reaction under 5 atm of CO pressure. At this stage, it is somewhat strange that cyclopentadiene participated as a dienophile, not as a diene, in the reaction conditions under 5 atm of CO pressure. In order to confirm whether the reaction proceeded due to a special property of cyclopentadiene was also examined reactions involving other conjugated dienes (Scheme 3 and Table 3).

Surprisingly, the [2+2+2] cycloaddition was not observed at all with the 1.3-dienes tested. Instead, the tandem carbon-

Scheme 3. $Co_2(CO)_8$ -catalyzed tandem carbonylative [4+2] cycloaddition of the internal divne 1a and conjugated dienes other than CpH.

Do Han Kim et al.

Table 3. $Co_2(CO)_8$ -catalyzed tandem carbonylative [4+2] cyclo-addition of 1a and dienes"

Entry	Diene	Cycloaddition	Product	Yield (%) ^b
l	\bigcirc	Ph Ph	3a	61
2	\succ	o Ph Ph	3b	35
3	${\bf e}$	o Ph Ph	3c	404

^aReactions were carried out with **1a** (0.8 mmol), diene (4.0 mmol), and 5 atm of CO pressure with 5 mol 9 of Co₂(CO)₈ in CH₂Cl₂ (30 mL) for 18 h. ^bIsolated yield. ^cCombined yield of two regioisomers with ratio of 1:1. The ratio was determined by a crude ¹H NMR spectrum.

ylative [4+2] cyclization products were obtained in moderate yields. It is envisioned that CO insertion into the cobaltacyclopentadiene intermediate I in Figure 2. which would lead to the tandem carbonylative [4+2] cyclization, could not happen easily under a low CO pressure. The intermediate I, which did not react as a diene either with the dienes other than cyclopentadiene in the [2+2+2] cycloaddition pathway, existed for long enough to react with CO and was finally transformed into the carbonylated [4+2] product. In other words, cyclopentadiene seems to have a better dienophilicity than the dienes tested in the present cyclization reaction conditions.

In summary, we have demonstrated that varying carbon monoxide pressure enables the use of cyclopentadiene as a dienophile, instead of as a diene, in the cobalt carbonylcatalyzed [2+2+2] cycloaddition reaction and that the selection of the reaction route between the [2+2+2] cycloaddition and the tandem carbonylative [4+2] cycloaddition can be achieved by varying pressure of carbon monoxide. Synthesis of polycyclic compounds containing 5- and 6-membered rings has been achieved by the method disclosed in this study.

Experimental Section

Solvents were dried and distilled according to standard methods before use. Dichloromethane was distilled from P_2O_5 under nitrogen. Reagents were purchased from Aldrich Chemical Co. and Strem Chemical Co. and were used as received. All yields are based upon isolated material. ¹H NMR and ¹³C NMR spectra were obtained with a Bruker 300 MHz spectrometer. High Resolution Mass Spectra were obtained at Korea Basic Science Institute (Daegu, Korea).

Representative reaction procedures. To a 100 mL highpressure reactor were added bis(1-phenyl-1-propynyl) ether (1a) (0.20 g, 0.81 mmol), cyclopentadiene (0.33 mL, 4.05 mmol), 30 mL of CH₂Cl₂, and Co₂(CO)₈ (14 mg, 41 μ mol). After the solution was flushed with CO gas in several seconds, the reactor was pressurized with 5 atm of CO. The reactor was heated at 120 °C for 18 h. After the reactor was cooled to room temperature and excess gas was vented, the solution was transferred into a flask and then evaporated to dryness. The residue was chromatographed on a silica gel column eluting with hexane and ethyl acetate (y/y, 10:1).

Compound 2a. Yield: 75%: ¹H NMR (CDCl₃): 7.49-7.36 (m, 4H), 7.34-7.27 (m, 6H), 5.80 (m, 1H). 5.67 (m, 1H). 4.75 (d, J = 12.7 Hz, 2H), 4.53 (t, J = 12.9, 2H). 4.40 (d, J = 11.6 Hz, 1H). 3.91 (q, J = 8.8 Hz, 1H). 2.80 (dd, J = 8.8, 16.7 Hz. 1H), 2.43 (dd, J = 5.6, 16.4 Hz, 1H); ¹³C NMR (CDCl₃): 140.2, 139.7, 132.3, 132.2, 131.9, 130.2, 130.0, 129.1, 128.8, 128.6, 128.5, 128.4, 127.3, 127.1, 71.5, 48.4, 42.8, 41.3, 38.8; HRMS for C₂₃H₂₀O₁: calcd. 312.1514, obsd. 312.1513.

Compound 2b. Yield: 72%: ¹H NMR (CDCl₃): 7.18 (brs. 8H), 5.74 (br. 1H), 5.65 (br. 1H), 4.72 (d. J = 12.4 Hz, 2H). 4.46 (t, J = 12.6, 2H), 4.35 (d, J = 11.3 Hz, 1H), 3.87 (q, J = 8.6 Hz, 1H), 2.76 (dd, J = 8.6, 16.1 Hz, 1H), 2.41 (br. 1H). 2.36 (brs, 6H): ¹³C NMR (CDCl₃): 137.1, 136.9, 136.6, 132.3, 131.6, 131.3, 130.0, 129.4, 129.2, 129.1, 127.0, 126.6, 71.5, 48.1, 42.8, 40.9, 21.3: HRMS for C₂₅H₂₄O₁: calcd. 340.1827, obsd. 340.1825.

Compound 2c. Yield: 58%: ¹H NMR (CDCl₃): 7.25 (dd. J = 4.8, 9.1 Hz, 4H). 7.10 (t, J = 8.6 Hz, 4H). 5.78 (dd, J = 2.4, 5.4 Hz, 1H), 5.60 (dd. J = 2.1, 5.6 Hz, 1H), 4.70-4.64 (m. 2H), 4.46 (t, J = 13.1, 2H), 4.31 (d. J = 11.5 Hz, 1H). 3.82 (m, 1H), 2.75 (dd. J = 8.7, 16.4 Hz, 1H), 2.37 (ddd, J = 2.2, 6.7, 16.4 Hz, 1H); ¹³C NMR (CDCl₃): 131.9, 131.6, 130.2, 128.8, 128.7, 125.9, 115.6, 115.5, 115.3, 115.2, 71.3, 71.2, 48.3, 42.6, 41.2; HRMS for C₂₃H₁₈O₁F₂: calcd. 348.1326, obsd. 348.1327.

Compound 2d. Yield: 89%: ¹H NMR (CDCl₃): 7.59 (d, J = 8.1 Hz, 2H). 7.45-7.33 (m, 4H), 7.32-7.22 (m, 4 H). 7.20-7.15 (m, 4H). 5.70 (m, 1H). 5.49 (m, 1H), 4.10 (m, 1H). 4.07-4.02 (m, 4H), 3.61 (q, J = 8.8 Hz, 1H). 2.64 (dd, J = 8.8, 16.3 Hz, 1H). 2.45 (s, 3H). 2.27(m, 1H); ¹³C NMR (CDCl₃): 144.1, 140.2, 139.6, 132.7, 132.1, 130.4, 130.1, 129.9, 129.5, 129.1, 128.5, 128.4, 128.1, 128.0, 127.8, 127.3, 127.1, 125.8, 52.8, 52.4, 49.0, 42.7, 41.8, 22.0; HRMS for C₃₀H₂₇O₂N₁S₁: calcd. 465.1763, obsd. 465.1762.

Compound 2e. Yield: 18%; ¹H NMR (CDCl₃): 7.43-7.15 (m, 10H). 5.71 (m, 1H). 5.58 (m, 1H). 4.29 (d, J = 11.0 Hz. 1H). 3.79 (q, J = 8.7 Hz. 1H). 2.70-2.49 (m, 4H). 2.48-2.31 (m, 2H). 1.84 (m, 1H). 1.37 (m, 1H); ¹³C NMR (CDCl₃): 141.7, 141.2, 135.2, 132.9, 131.7, 130.6, 129.8, 128.4, 128.2, 128.1, 128.0, 127.8, 127.5, 126.5, 48.7, 42.8, 41.5, 32.6, 32.5, 25.4; HRMS for C₂₄H₂₂: calcd. 310.1722, obsd. 310.1725.

Compound 2f. Yield: 89%: ¹H NMR (CDCl₃): 7.42-7.30 (m, 10H). 5.72 (m, 1H). 5.53 (m, 1H). 4.24 (d, J = 11.2 Hz. 1H). 3.72 (m, 1H). 3.71 (s. 3H). 3.58 (s. 3H). 3.17 (dt, J = 3.3, 16.3 Hz, 2H). 3.13-3.00 (m, 2H). 2.66 (dd, J = 8.8, 16.3 Hz, 1H). 2.33 (m, 1H); ¹³C NMR (CDCl₃): 172.2, 171.7, 141.0, 140.4, 132.6, 132.2, 131.2, 130.9, 129.9, 129.6, 129.2, 128.4, 128.3, 128.0, 127.9, 126.9, 58.8, 53.1, 53.0, 52.9, 48.9, 42.7, 41.8, 39.4; HRMS for C₂₈H₂₆O₄: calcd.

426.1831, obsd. 426.1832.

Compound 3a. Yield: 61%; ¹H NMR (CDCl₃): 7.43-7.25 (m, 10H), 6.30 (t, J = 7.5 Hz. 1H), 6.10 (t, J = 7.4 Hz. 1H), 4.94 (d, J = 16.1 Hz, 1H), 4.58 (d, J = 16.1 Hz. 1H), 4.22 (d, J = 8.5 Hz, 1H). 3.51 (d. J = 8.5 Hz. 1H), 3.22 (br s. 1H), 2.98 (br s. 1H), 2.07 (m. 2H), 1.52 (m, 1H). 1.29 (m. 1H); ¹³C NMR (CDCl₃): 208.8, 177.9, 136.4, 136.3, 134.9, 131.6, 130.6, 128.7, 128.6, 128.5, 128.4, 128.2, 127.0, 70.7, 65.7, 63.0, 59.4, 39.8, 36.5, 22.4, 19.2; IR (C=O) 1700 cm⁻¹: HRMS for C₂₅H₂₂O₂: calcd. 354.1620, obsd. 354.1617.

Compound 3b. Yield: 35%: ¹H NMR (CDCl₃): 7.41 (d, J = 7.2 Hz, 2H). 7.30-7.20 (m. 3H), 7.09-7.05 (m, 3H). 6.90 (d. J = 7.1 Hz. 2H). 4.81 (d, J = 17.0 Hz. 1H). 4.37 (d, J = 17.0 Hz, 1H), 3.51 (d, J = 8.4 Hz, 1H). 2.69 (d. J = 8.4 Hz, 1H). 2.51 (d, J = 15.0 Hz, 1H). 2.45 (d. J = 14.0 Hz. 1H), 2.41 (d, J = 13.0 Hz, 1H). 2.28 (d, J = 15.0 Hz, 1H), 1.50 (s, 3 H). 1.46 (s. 3 H); ¹³C NMR (CDCl₃): 209.6. 177.3, 141.3, 134.7, 130.6, 129.7. 128.7. 128.6, 128.5, 128.1. 126.9. 126.7, 125.8, 74.8, 65.7, 62.5, 59.4, 40.3, 39.8. 19.4. 19.0: IR (C=O) 1702 cm⁻¹: HRMS for C₂₅H₂₄O₂: calcd. 356.1776, obsd. 356.1776.

Compound 3c. Two regioisomers having methyl group in different position were obtained.

3c-1: Yield: 28%; ¹H NMR (CDCl₃): 7.61 (d. J = 7.2 Hz, 2H). 7.43 (m. 3H). 7.26 (m. 3H), 7.10 (d, J = 7.0 Hz. 2H), 5.70 (br s, 1H). 5.00 (d, J = 16.7 Hz. 1H), 4.53 (d, J = 16.7 Hz. 1H), 3.69 (d. J = 9.0 Hz, 1H). 2.86 (d, J = 8.6 Hz. 1H), 2.83 (d. J = 8.6 Hz. 1H), 2.64 (d. J = 15.1 Hz, 1H), 2.55 (d. J = 14.7 Hz, 1H). 2.47 (d. J = 14.7. 1H), 1.70 (s. 3H); ¹³C NMR (CDCl₃): 210.3, 177.6. 141.6, 139.6. 134.9, 130.6. 128.8, 128.7. 128.3. 128.2. 127.0. 126.8. 119.5. 75.0, 65.7. 62.2, 59.0. 38.3. 33.9, 23.6; IR (C=O) 1706 cm⁻¹: HRMS for C₂₄H₂₂O₂: calcd. 342.1620. obsd. 342.1617.

3c-2: Yield: 12%; ¹H NMR (CDCl₃): 7.60 (d. J = 7.2 Hz, 2H). 7.34 (m. 3H). 7.19 (m. 3H), 7.09 (d, J = 7.0 Hz. 2H), 5.45 (br s, 1H). 4.94 (d, J = 16.7 Hz. 1H), 4.53 (d, J = 16.7 Hz. 1H), 3.67 (d. J = 9.0 Hz, 1H). 2.84 (d, J = 8.5 Hz. 1H), 2.67 (d. J = 8.5 Hz. 1H), 2.60 (d. J = 14.9 Hz, 1H). 2.58 (d. J = 14.8 Hz. 1H), 2.43 (d. J = 14.8 Hz. 1H). 1.73 (s. 3H); ¹³C NMR (CDCl₃): 209.5, 177.8, 141.4, 135.4, 134.5, 128.8, 128.7, 128.5, 128.2, 128.0, 126.9, 123.0, 75.2, 65.8, 62.5, 58.9, 38.4, 33.9, 23.2; IR (C=O) 1706 cm⁻¹: HRMS for C₂₄H₂₂O₂: calcd. 342.1620. obsd. 342.1618.

Acknowledgements. This work was supported by the Korean Government (MOEHRD) (KRF-2005-070-C00072) and the SRC/ERC program of MOST/KOSEF (R11-2005-065). J. W. H is grateful for the research fund of "On-Site Cooperative Agriculture Research Project (Project No. 20070201080024)", RDA, Republic of Korea.

References

 (a) Petit, M.; Aubert, C.; Malacria, M. Org. Lett. 2004, 6, 3937;
(b) Bonaga, L. V. R.; Zhang, H. C.; Maryanoff, B. E. Chem. Commun. 2004, 2394;
(c) Gandon, V.; Leca, D.; Aechtner, T.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C. Org. Lett. 2004, 6, 3405;
(d) Chouraqui, G.; Petit, M.; Aubert, C.; Malacria, M. Org. Lett. 2004. 6, 1519; (e) Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H. J.; Spannenberg, A.; Sundermann, B.; Sundermann, C. Angew, Chem. Int. Ed. 2004, 43, 3795; (f) Bonaga, L. V. R.; Zhang, H. C.; Gauthier, D. A.; Reddy, I.; Maryanoff, B. E. Org. Lett. 2003, 5, 4537; (g) Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787; (h) Hilt, G.; Smolko, K. I. Angew, Chem. Int. Ed. 2003, 42, 2795.

- (a) Han, S.; Anderson, D. R.; Bond, A. D.; Chu, H. V.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem. Int. Ed. 2002, 41, 3227; (b) Pelissier, H.; Rodriguez, J.; Vollhardt, K. P. C. Chem. Eur. J. 1999, 5, 3549; (c) Cammack, J. K.; Jalisatgi, S.; Matzger, A. J.; Negron, A.; Vollhardt, K. P. C. J. Org. Chem. 1996, 61, 4798; (d) Vollhardt, K. P. C. Angew. Chem. 1984, 96, 525; (e) Vollhardt, K. P. C. Acc. Chem. Res. 1977, 10, 1.
- (a) Eichberg, M. J.; Dorta, R. L.; Grotjahn, D. B.; Lamottke, K.; Schmidt, M.; Vollhardt, K. P. C. J. Am. Chem. Soc. 2001, 123.
 9324; (b) Saa, C.; Crotts, D. D.; Hsu, G; Vollhardt, K. P. C. Synlett. 1994, 487; (c) Lecker, S. H.; Nguyen, N. H.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1986, 108, 856; (d) Dunach, E.; Halterman, R. L.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1985, 107, 1664.
- 4. (a) Sheppard, G. S.; Vollhardt, K. P. C. J. Org. Chem. 1986, 51,

5496: (b) Boese, R.; Knölker, H. J.; Vollhardt, K. P. C. Angew. Chem. Int. Ed. Engl. 1987, 26, 1035; (c) Boese, R.; Harvey, D. F.; Malaska, M. J.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1994, 116, 11153; (d) Pérez, D.; Siesel, B. A.; Malaska, M. J.; David, E.; Vollhardt, K. P. C. Synlett 2000, 366; (e) Pelissier, H.; Rodriguez, J.; Vollhardt, K. P. C. Chem. Eur. J. 1999, 5, 3549.

- For titanium-mediated [2+2+2] coupling, see: Sung, M. J.; Pang, J. H.; Park, S. B.; Cha, J. K. Org. Lett. 2003, 5, 2137.
- (a) Son, S. U.; Park, K. H.; Lee, S. J.; Kim, B. M.; Chung, Y. K. Synlett 2003, 1101; (b) Kim, D. H.; Son, S. U.; Chung, Y. K. Chem. Commun. 2002, 56; (c) Son, S. U.; Yoon, Y. A.; Choi, D. S.; Park, J. K.; Kim, B. M.; Chung, Y. K. Org. Lett. 2001, 3, 1065; (d) Son, S. U.; Chung, Y. K.; Lee, S. G. J. Org. Chem. 2000, 65, 6142.
- Kim, D. H.; Chung, Y. K.; Han, J. W. Bull. Korean Chem. Soc. 2007, 28, 1089.
- Wakatsuki, Y.; Kuramitsu, T.: Yamazaki, H. Tetrahedron Lett. 1974, 52, 4549.
- Wakatsuki, Y.; Yamazaki, H. J. Organomet. Chem. 1977, 139, 169.
- (a) Lawson, K. R.; Singleton, A.; Whitham, G. H. J. Chem. Soc. Perkin Trans. 1 1984, 865; (b) Tedder, J. M.; Horspool, W. M.; Smith, P. I. J. Chem. Soc. C 1971, 1638.