DOI QR코드

DOI QR Code

Surface-Enhanced Raman Scattering of Benzenethiol Adsorbed on Silver-Exchanged Copper Powders

  • Shin, Kuan-Soo (Department of Chemistry, Soongsil University) ;
  • Ryoo, Hyun-Woo (Department of Chemistry, Seoul National University) ;
  • Lee, Yoon-Mi (Department of Chemistry, Seoul National University) ;
  • Kim, Kwan (Department of Chemistry, Seoul National University)
  • Published : 2008.02.20

Abstract

Micrometer-sized copper (mCu) powders are weakly surface-enhanced Raman scattering (SERS) active by the excitation at 632.8 nm, but nearly ineffective as a SERS substrate at 514.5 nm excitation. The SERS activity of mCu powders at both excitation wavelengths can be increased dramatically by a simple method of the galvanic exchange reaction with AgNO3 in aqueous medium. In this work, the SERS activity of the Ag-exchanged Cu powders (mCu@Ag) has been evaluated by taking a series of Raman spectra using benzenethiol (BT) as the probe molecule. It is clearly confirmed by field emission scanning electron microscopy and X-ray diffractometry that the SERS activity of mCu@Ag powders is, in fact, highly dependent on the extent of galvanic reaction.

Keywords

References

  1. Nie, S.; Emory, S. R. Science 1997, 275, 1102 https://doi.org/10.1126/science.275.5303.1102
  2. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667 https://doi.org/10.1103/PhysRevLett.78.1667
  3. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 99, 2957 https://doi.org/10.1021/cr980133r
  4. Xu, H.; Bjerneld, E. J.; Kall, M.; Borjesson, L. Phys. Rev. Lett. 1999, 83, 4357 https://doi.org/10.1103/PhysRevLett.83.4357
  5. Futamata, M.; Maruyama, Y.; Ishikawa, M. Vib. Spectrosc. 2002, 30, 17 https://doi.org/10.1016/S0924-2031(02)00034-6
  6. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163 https://doi.org/10.1016/0009-2614(74)85388-1
  7. Ni, J.; Lipert, R. J.; Dawson, G. B.; Porter, M. D. Anal. Chem. 1999, 71, 4903 https://doi.org/10.1021/ac990616a
  8. Kim, N. H.; Lee, S. J.; Kim, K. Chem. Commun. 2003, 9, 724
  9. Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002, 106, 9463 https://doi.org/10.1021/jp0257449
  10. Lee, C. J.; Kim, H. J.; Karim, M. R.; Lee, M. S. Bull. Korean Chem. Soc. 2006, 27, 545 https://doi.org/10.5012/bkcs.2006.27.4.545
  11. Joo, S.-W. Bull. Korean Chem. Soc. 2007, 28, 1405 https://doi.org/10.5012/bkcs.2007.28.8.1405
  12. Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. J. Phys. Chem. B 2003, 107, 9964 https://doi.org/10.1021/jp034632u
  13. Lecomte, S.; Matejka, P.; Baron, M. H. Langmuir 1998, 14, 4373 https://doi.org/10.1021/la980094e
  14. Campion, A.; Ivanecky, J. E.; Child, C. M.; Foster, M. J. Am. Chem. Soc. 1995, 117, 11807 https://doi.org/10.1021/ja00152a024
  15. Doering, W. E.; Nie, S. J. Phys. Chem. B 2002, 106, 311 https://doi.org/10.1021/jp011730b
  16. Markel, V. A.; Shalaev, V. M.; Zhang, P.; Huynh, W.; Tay, L.; Haslett, T. L.; Moskovits, M. Phys. Rev. B 1999, 59, 10903 https://doi.org/10.1103/PhysRevB.59.10903
  17. Bozhevolnyi, S. I.; Markel, V. A.; Coello, V.; Kim, W.; Shalaev, V. M. Phys. Rev. B 1998, 58, 11441 https://doi.org/10.1103/PhysRevB.58.11441
  18. Michaels, A. M.; Jiang, J.; Brus, L. J. Phys. Chem. B 2000, 104, 11965 https://doi.org/10.1021/jp0025476
  19. Kim, K.; Lee, H. S. J. Phys. Chem. B 2005, 109, 18929 https://doi.org/10.1021/jp052665z
  20. Mengoli, G.; Musiani, M. M.; Fleischman, M.; Mao, B.; Tian, Z. Q. Electrochim. Acta 1987, 32, 1239 https://doi.org/10.1016/0013-4686(87)80042-7
  21. Nie, C.-S.; Feng, Z. Appl. Spectrosc. 2002, 56, 300 https://doi.org/10.1366/0003702021954872
  22. Zuo, C.; Jagodzinski, P. W. J. Phys. Chem. B 2005, 109, 1788 https://doi.org/10.1021/jp0406363
  23. Song, W.; Cheng, Y.; Jia, H.; Xu, W.; Zhao, B. J. Colloid Interface Sci. 2006, 298, 765 https://doi.org/10.1016/j.jcis.2006.01.037
  24. Wen, X.; Xie, Y.-T.; Mak, M. W. C.; Cheung, K. Y.; Li, X.-Y.; Renneberg, R.; Yang, S. Langmuir 2006, 22, 4836 https://doi.org/10.1021/la060267x
  25. Yosef, I.; Avnir, D. Chem. Mater. 2006, 18, 5890 https://doi.org/10.1021/cm0615368
  26. Qu, L.; Dai, L. J. Phys. Chem. B 2005, 109, 13985 https://doi.org/10.1021/jp0515838
  27. Joo, T. H.; Kim, M. S.; Kim, K. J. Raman Spectrosc. 1987, 18, 57 https://doi.org/10.1002/jrs.1250180111
  28. Carron, K. T.; Hurley, L. G. J. Phys. Chem. 1991, 95, 9979 https://doi.org/10.1021/j100177a068
  29. Taylor, C. E.; Pemberton, J. E.; Goodman, G. G.; Schoenfisch, M. H. Appl. Spectrosc. 1999, 53, 1212 https://doi.org/10.1366/0003702991945687
  30. Xue, G.; Ma, M.; Zhang, J.; Lu, Y.; Carron, K. T. J. Colloid Interface Sci. 1992, 150, 1 https://doi.org/10.1016/0021-9797(92)90262-K
  31. Yu, H. Z.; Zhang, J.; Zhang, H. L.; Liu, Z. F. Langmuir 1999, 15, 16 https://doi.org/10.1021/la981032r
  32. Wan, L.-J.; Terashima, M.; Noda, H.; Osawa, M. J. Phys. Chem. B 2000, 104, 3563 https://doi.org/10.1021/jp993328r

Cited by

  1. Direct conversion of silver complexes to nanoscale hexagonal columns on a copper alloy for plasmonic applications vol.15, pp.35, 2013, https://doi.org/10.1039/c3cp52564c
  2. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors vol.7, pp.48, 2015, https://doi.org/10.1021/acsami.5b09947
  3. Large-Area, Highly Sensitive SERS Substrates with Silver Nanowire Thin Films Coated by Microliter-Scale Solution Process vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-017-2351-y
  4. Opal-Type Photonic Crystals: Fabrication and Application vol.71, pp.1662-0356, 2010, https://doi.org/10.4028/www.scientific.net/AST.71.50
  5. Laser-Induced Photoreaction of Bis(4-nitrophenyl) Disulfide on Copper Revealed by Surface-Enhanced Raman Scattering vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.242
  6. Development of porous silicon‐coated gold nanoparticles as potential theragnostic material vol.42, pp.12, 2021, https://doi.org/10.1002/bkcs.12420