DOI QR코드

DOI QR Code

Pyridinolysis of O,O-Diphenyl S-Phenyl Phosphorothiolates in Acetonitrile

  • Published : 2008.04.20

Abstract

The reactions of O,O-diphenyl Z-S-phenyl phosphorothiolates with X-pyridines have been studied kinetically in acetonitrile at $35.0{^{\circ}C}$. The Hammett plots for substituent (Z) variations in the leaving group (log $k_2$ vs. $\sigma$ Z) are biphasic concave downwards with breaks at Z = H. The large magnitudes of ${\rho}X(\rho_{nuc})$, ${\beta}X(\rho_{nuc})$, and the cross-interaction constant, $\rho$XZ, suggest frontside nucleophilic attack toward the leaving group. The sign reversal of $\rho$Z from positive in $\sigma$ Z $\leq$ 0 to negative in $\sigma$ Z $\geq$ 0 is interpreted as the change in mechanism from concerted to stepwise with rate-limiting expulsion of the leaving group. The anomalous negative sign of $\rho$ Z for leaving groups with electron-withdrawing substituents is interpreted as the intramolecular ligand exchange process of the leaving group from the equatorial position in the intermediate to the apical position in the TS.

Keywords

References

  1. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597 https://doi.org/10.1021/ja00336a047
  2. Hosfield, D. J.; Guan, Y.; Haas, B. J.; Cunningham, R. P.; Tainer, J. A. Cell 1999, 98, 397 https://doi.org/10.1016/S0092-8674(00)81968-6
  3. Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Chapter 7-8
  4. Mol, C. D.; Izumi, T.; Mitra, S.; Tainer, J. A. Nature 2000, 403, 451 https://doi.org/10.1038/35000249
  5. Chapados, B. R.; Chai, Q.; Hosfield, D. J.; Qiu, J.; Shen, B.; Tainer, J. A. J. Mol. Biol. 2001, 307, 541 https://doi.org/10.1006/jmbi.2001.4494
  6. Harger, M. J. P. J. Chem. Soc., Perkin Trans. 2 2002, 489
  7. Humphry, T.; Forconi, M.; Williams, N. H.; Hengge, A. C. J. Am. Chem. Soc. 2004, 126, 11864 https://doi.org/10.1021/ja047110g
  8. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703 https://doi.org/10.1021/ja0501565
  9. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715 https://doi.org/10.1021/jo061308x
  10. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539 https://doi.org/10.1039/b712427a
  11. Reimschussel, W.; Mikolajczyk, M.; Tilk, H. S.; Gajl, M. Int. J. Chem. Kinet. 1980, 12, 979 https://doi.org/10.1002/kin.550121207
  12. Friedman, J. M.; Freeman, S.; Knowles, J. R. J. Am. Chem. Soc. 1988, 110, 1268 https://doi.org/10.1021/ja00212a040
  13. Hoff, R. H.; Hengge, A. C. J. Org. Chem. 1998, 63, 6680 https://doi.org/10.1021/jo981160k
  14. Admiraal, S. J.; Herschlag, D. J. Am. Chem. Soc. 2000, 122, 2145 https://doi.org/10.1021/ja993942g
  15. Harger, M. J. P. Chem. Commun. 2005, 22, 2863
  16. Hengge, A. C. Adv. Phys. Org. Chem. 2005, 40, 49 https://doi.org/10.1016/S0065-3160(05)40002-7
  17. van Bochove, M. A.; Swart, M.; Bickelhaupt, M. J. Am. Chem. Soc. 2006, 128, 10738 https://doi.org/10.1021/ja0606529
  18. Hall, C. R.; Inch, T. D. Tetrahedron 1980, 36, 2059 https://doi.org/10.1016/0040-4020(80)80096-2
  19. Rowell, R.; Gorenstein, D. G. J. Am. Chem. Soc. 1981, 103, 5894 https://doi.org/10.1021/ja00409a046
  20. Inch, T. D.; Lewis, G. J.; Wilkinson, R. G.; Watts, P. J. Chem. Soc., Chem. Commun. 1975, 500
  21. Corriu, R. J. P.; Dutheil, J. P.; Lanneau, G. F. J. Am. Chem. Soc. 1984, 106, 1060 https://doi.org/10.1021/ja00316a041
  22. Corriu, R. J. P.; Dutheil, J. P.; Lanneau, G. F.; Leclercq, D. Tetrahedron Lett. 1983, 24, 4323 https://doi.org/10.1016/S0040-4039(00)88331-8
  23. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765
  24. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632 https://doi.org/10.1002/kin.10081
  25. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493 https://doi.org/10.1021/jo0700934
  26. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936 https://doi.org/10.5012/bkcs.2007.28.6.936
  27. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003 https://doi.org/10.5012/bkcs.2007.28.11.2003
  28. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944 https://doi.org/10.1039/b713167d
  29. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, DOI:10.1002/poc.1314. Pyridinolysis
  30. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12 https://doi.org/10.1021/jo990671j
  31. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215 https://doi.org/10.1021/jo0162742
  32. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135 https://doi.org/10.5012/bkcs.2003.24.8.1135
  33. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797 https://doi.org/10.5012/bkcs.2007.28.10.1797
  34. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 112, 11162
  35. Lee, I. Chem. Soc. Rev. 1990, 19, 317 https://doi.org/10.1039/cs9901900317
  36. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
  37. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529 https://doi.org/10.1135/cccc19991529
  38. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 https://doi.org/10.1021/cr00002a004
  39. Albert, A.; Serjeant, E. P. The Determination of Ionization Constants, 3rd ed.; Chapman and Hall: New York, 1984
  40. Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Chapter 8
  41. Lee, I.; Shim, S. C.; Chung, S. U.; Kim, H. U.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 1988, 1919
  42. Lee, I.; Shim, S. C.; Lee, H. W. J. Chem. Res. (S) 1992, 90
  43. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4
  44. Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287 https://doi.org/10.1002/9780470171950.ch6
  45. Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1994, 125
  46. Kumara Swamy, K. C.; Satish Kumar, N. Acc. Chem. Res. 2006, 39, 324 https://doi.org/10.1021/ar050188x
  47. Vayron, P.; Taran, F.; Creminon, C.; Frobert, Y.; Grassi, J.; Mioskowski, C. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7058 https://doi.org/10.1073/pnas.97.13.7058
  48. Thatcher, G. R. J. Adv. Phys. Org. Chem. 1989, 25, 99 https://doi.org/10.1016/S0065-3160(08)60019-2
  49. Berry, R. S. J. Chem. Phys. 1960, 32, 933 https://doi.org/10.1063/1.1730820
  50. Ugi, I.; Marquarding, D.; Klusacek, H.; Gillespie, P.; Ramirez, F. Acc. Chem. Res. 1971, 4, 288 https://doi.org/10.1021/ar50044a004
  51. Torii, S.; Tanaka, H.; Sayo, N. J. Org. Chem. 1979, 44, 2938 https://doi.org/10.1021/jo01330a025

Cited by

  1. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
  2. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1625
  3. Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1939
  4. Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1945
  5. Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
  6. Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2805
  7. Kinetics and mechanism of the anilinolyses of aryl dimethyl, methyl phenyl and diphenyl phosphinates vol.9, pp.3, 2011, https://doi.org/10.1039/C0OB00517G
  8. Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
  9. Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
  10. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  11. Concurrent primary and secondary deuterium kinetic isotope effects in anilinolysis of O-aryl methyl phosphonochloridothioates vol.7, pp.14, 2009, https://doi.org/10.1039/b903148k
  12. Anilinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.2065
  13. Pyridinolysis of O-Aryl Phenylphosphonochloridothioates in Acetonitrile vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1769
  14. Kinetics and Mechanism of the Aminolysis of Dimethyl Thiophosphinic Chloride with Anilines vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.975
  15. A Kinetic Study on Aminolysis of 2-Pyridyl X-Substituted Benzoates: Effect of Changing Leaving Group from 4-Nitrophenolate to 2-Pyridinolate on Reactivity and Mechanism vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3588
  16. Kinetics and Mechanism of the Pyridinolyses of Dimethyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile vol.31, pp.12, 2008, https://doi.org/10.5012/bkcs.2010.31.12.3856
  17. Anilinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.31, pp.5, 2008, https://doi.org/10.5012/bkcs.2010.31.5.1403
  18. Nonlinear Hammett plots in pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates: change in RDS versus resonance contribution vol.8, pp.16, 2008, https://doi.org/10.1039/c0ob00031k
  19. Kinetic and Theoretical Studies on Pyridinolysis of 2,4-Dinitrophenyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Mechanism vol.31, pp.9, 2008, https://doi.org/10.5012/bkcs.2010.31.9.2593
  20. Kinetics and mechanism of the pyridinolyses of dimethyl and diethyl chloro(thiono)phosphates in acetonitrile vol.23, pp.11, 2008, https://doi.org/10.1002/poc.1709
  21. Kinetics and mechanism of the pyridinolysis of N‐aryl‐P,P‐diphenyl phosphinic amides in dimethyl sulfoxide vol.24, pp.6, 2011, https://doi.org/10.1002/poc.1788
  22. Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2008, https://doi.org/10.5012/bkcs.2011.32.11.3947
  23. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  24. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2008, https://doi.org/10.5012/bkcs.2011.32.12.4304
  25. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2008, https://doi.org/10.5012/bkcs.2011.32.12.4387
  26. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2008, https://doi.org/10.5012/bkcs.2011.32.12.4403
  27. Pyridinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.32, pp.2, 2008, https://doi.org/10.5012/bkcs.2011.32.2.709
  28. Theoretical Study of Phosphoryl Transfer Reactions vol.32, pp.3, 2008, https://doi.org/10.5012/bkcs.2011.32.3.889
  29. Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2008, https://doi.org/10.5012/bkcs.2011.32.6.1997
  30. Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile vol.32, pp.4, 2008, https://doi.org/10.5012/bkcs.2011.32.4.1138
  31. Kinetics and Mechanism of the Pyridinolysis of O-Aryl Methyl Phosphonochloridothioates in Acetonitrile vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1375
  32. Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.7, 2008, https://doi.org/10.5012/bkcs.2011.32.7.2306
  33. Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2339
  34. Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.8, 2008, https://doi.org/10.5012/bkcs.2011.32.8.2628
  35. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3245
  36. Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.32, pp.9, 2008, https://doi.org/10.5012/bkcs.2011.32.9.3355
  37. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
  38. Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3743
  39. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2008, https://doi.org/10.5012/bkcs.2012.33.3.1055
  40. Linear free energy relationship and deuterium kinetic isotope effect observed on phospho and thiophosphoryl transfer reactions in some organophosphorous compounds vol.495, pp.1, 2014, https://doi.org/10.1088/1742-6596/495/1/012004
  41. Kinetics and Mechanism of Pyridinolysis of O,O-Diethyl S-Aryl Phosphorothioates vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1329