참고문헌
- Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597 https://doi.org/10.1021/ja00336a047
- Hosfield, D. J.; Guan, Y.; Haas, B. J.; Cunningham, R. P.; Tainer, J. A. Cell 1999, 98, 397 https://doi.org/10.1016/S0092-8674(00)81968-6
- Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Chapter 7-8
- Mol, C. D.; Izumi, T.; Mitra, S.; Tainer, J. A. Nature 2000, 403, 451 https://doi.org/10.1038/35000249
- Chapados, B. R.; Chai, Q.; Hosfield, D. J.; Qiu, J.; Shen, B.; Tainer, J. A. J. Mol. Biol. 2001, 307, 541 https://doi.org/10.1006/jmbi.2001.4494
- Harger, M. J. P. J. Chem. Soc., Perkin Trans. 2 2002, 489
- Humphry, T.; Forconi, M.; Williams, N. H.; Hengge, A. C. J. Am. Chem. Soc. 2004, 126, 11864 https://doi.org/10.1021/ja047110g
- Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703 https://doi.org/10.1021/ja0501565
- Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715 https://doi.org/10.1021/jo061308x
- Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539 https://doi.org/10.1039/b712427a
- Reimschussel, W.; Mikolajczyk, M.; Tilk, H. S.; Gajl, M. Int. J. Chem. Kinet. 1980, 12, 979 https://doi.org/10.1002/kin.550121207
- Friedman, J. M.; Freeman, S.; Knowles, J. R. J. Am. Chem. Soc. 1988, 110, 1268 https://doi.org/10.1021/ja00212a040
- Hoff, R. H.; Hengge, A. C. J. Org. Chem. 1998, 63, 6680 https://doi.org/10.1021/jo981160k
- Admiraal, S. J.; Herschlag, D. J. Am. Chem. Soc. 2000, 122, 2145 https://doi.org/10.1021/ja993942g
- Harger, M. J. P. Chem. Commun. 2005, 22, 2863
- Hengge, A. C. Adv. Phys. Org. Chem. 2005, 40, 49 https://doi.org/10.1016/S0065-3160(05)40002-7
- van Bochove, M. A.; Swart, M.; Bickelhaupt, M. J. Am. Chem. Soc. 2006, 128, 10738 https://doi.org/10.1021/ja0606529
- Hall, C. R.; Inch, T. D. Tetrahedron 1980, 36, 2059 https://doi.org/10.1016/0040-4020(80)80096-2
- Rowell, R.; Gorenstein, D. G. J. Am. Chem. Soc. 1981, 103, 5894 https://doi.org/10.1021/ja00409a046
- Inch, T. D.; Lewis, G. J.; Wilkinson, R. G.; Watts, P. J. Chem. Soc., Chem. Commun. 1975, 500
- Corriu, R. J. P.; Dutheil, J. P.; Lanneau, G. F. J. Am. Chem. Soc. 1984, 106, 1060 https://doi.org/10.1021/ja00316a041
- Corriu, R. J. P.; Dutheil, J. P.; Lanneau, G. F.; Leclercq, D. Tetrahedron Lett. 1983, 24, 4323 https://doi.org/10.1016/S0040-4039(00)88331-8
- Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765
- Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632 https://doi.org/10.1002/kin.10081
- Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493 https://doi.org/10.1021/jo0700934
- Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936 https://doi.org/10.5012/bkcs.2007.28.6.936
- Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003 https://doi.org/10.5012/bkcs.2007.28.11.2003
- Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944 https://doi.org/10.1039/b713167d
- Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, DOI:10.1002/poc.1314. Pyridinolysis
- Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12 https://doi.org/10.1021/jo990671j
- Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215 https://doi.org/10.1021/jo0162742
- Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135 https://doi.org/10.5012/bkcs.2003.24.8.1135
- Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797 https://doi.org/10.5012/bkcs.2007.28.10.1797
- Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 112, 11162
- Lee, I. Chem. Soc. Rev. 1990, 19, 317 https://doi.org/10.1039/cs9901900317
- Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
- Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529 https://doi.org/10.1135/cccc19991529
- Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 https://doi.org/10.1021/cr00002a004
- Albert, A.; Serjeant, E. P. The Determination of Ionization Constants, 3rd ed.; Chapman and Hall: New York, 1984
- Dean, J. A. Handbook of Organic Chemistry; McGraw-Hill: New York, 1987; Chapter 8
- Lee, I.; Shim, S. C.; Chung, S. U.; Kim, H. U.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 1988, 1919
- Lee, I.; Shim, S. C.; Lee, H. W. J. Chem. Res. (S) 1992, 90
- Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4
- Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287 https://doi.org/10.1002/9780470171950.ch6
- Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1994, 125
- Kumara Swamy, K. C.; Satish Kumar, N. Acc. Chem. Res. 2006, 39, 324 https://doi.org/10.1021/ar050188x
- Vayron, P.; Taran, F.; Creminon, C.; Frobert, Y.; Grassi, J.; Mioskowski, C. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7058 https://doi.org/10.1073/pnas.97.13.7058
- Thatcher, G. R. J. Adv. Phys. Org. Chem. 1989, 25, 99 https://doi.org/10.1016/S0065-3160(08)60019-2
- Berry, R. S. J. Chem. Phys. 1960, 32, 933 https://doi.org/10.1063/1.1730820
- Ugi, I.; Marquarding, D.; Klusacek, H.; Gillespie, P.; Ramirez, F. Acc. Chem. Res. 1971, 4, 288 https://doi.org/10.1021/ar50044a004
- Torii, S.; Tanaka, H.; Sayo, N. J. Org. Chem. 1979, 44, 2938 https://doi.org/10.1021/jo01330a025
피인용 문헌
- Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
- Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1625
- Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1939
- Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1945
- Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
- Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2805
- Kinetics and mechanism of the anilinolyses of aryl dimethyl, methyl phenyl and diphenyl phosphinates vol.9, pp.3, 2011, https://doi.org/10.1039/C0OB00517G
- Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
- Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
- Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
- Concurrent primary and secondary deuterium kinetic isotope effects in anilinolysis of O-aryl methyl phosphonochloridothioates vol.7, pp.14, 2009, https://doi.org/10.1039/b903148k
- Anilinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.2065
- Pyridinolysis of O-Aryl Phenylphosphonochloridothioates in Acetonitrile vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1769
- Kinetics and Mechanism of the Aminolysis of Dimethyl Thiophosphinic Chloride with Anilines vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.975
- A Kinetic Study on Aminolysis of 2-Pyridyl X-Substituted Benzoates: Effect of Changing Leaving Group from 4-Nitrophenolate to 2-Pyridinolate on Reactivity and Mechanism vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3588
- Kinetics and Mechanism of the Pyridinolyses of Dimethyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile vol.31, pp.12, 2008, https://doi.org/10.5012/bkcs.2010.31.12.3856
- Anilinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.31, pp.5, 2008, https://doi.org/10.5012/bkcs.2010.31.5.1403
- Nonlinear Hammett plots in pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates: change in RDS versus resonance contribution vol.8, pp.16, 2008, https://doi.org/10.1039/c0ob00031k
- Kinetic and Theoretical Studies on Pyridinolysis of 2,4-Dinitrophenyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Mechanism vol.31, pp.9, 2008, https://doi.org/10.5012/bkcs.2010.31.9.2593
- Kinetics and mechanism of the pyridinolyses of dimethyl and diethyl chloro(thiono)phosphates in acetonitrile vol.23, pp.11, 2008, https://doi.org/10.1002/poc.1709
- Kinetics and mechanism of the pyridinolysis of N‐aryl‐P,P‐diphenyl phosphinic amides in dimethyl sulfoxide vol.24, pp.6, 2011, https://doi.org/10.1002/poc.1788
- Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2008, https://doi.org/10.5012/bkcs.2011.32.11.3947
- Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
- Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2008, https://doi.org/10.5012/bkcs.2011.32.12.4304
- Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2008, https://doi.org/10.5012/bkcs.2011.32.12.4387
- Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2008, https://doi.org/10.5012/bkcs.2011.32.12.4403
- Pyridinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.32, pp.2, 2008, https://doi.org/10.5012/bkcs.2011.32.2.709
- Theoretical Study of Phosphoryl Transfer Reactions vol.32, pp.3, 2008, https://doi.org/10.5012/bkcs.2011.32.3.889
- Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2008, https://doi.org/10.5012/bkcs.2011.32.6.1997
- Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile vol.32, pp.4, 2008, https://doi.org/10.5012/bkcs.2011.32.4.1138
- Kinetics and Mechanism of the Pyridinolysis of O-Aryl Methyl Phosphonochloridothioates in Acetonitrile vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1375
- Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.7, 2008, https://doi.org/10.5012/bkcs.2011.32.7.2306
- Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2339
- Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.8, 2008, https://doi.org/10.5012/bkcs.2011.32.8.2628
- Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3245
- Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.32, pp.9, 2008, https://doi.org/10.5012/bkcs.2011.32.9.3355
- Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
- Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3743
- Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2008, https://doi.org/10.5012/bkcs.2012.33.3.1055
- Linear free energy relationship and deuterium kinetic isotope effect observed on phospho and thiophosphoryl transfer reactions in some organophosphorous compounds vol.495, pp.1, 2014, https://doi.org/10.1088/1742-6596/495/1/012004
- Kinetics and Mechanism of Pyridinolysis of O,O-Diethyl S-Aryl Phosphorothioates vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1329